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FOREWORD 

This document, "The Investigation of Advanced Remote Sensing, Radiative 

Transfer and Inversion Techniques for the Measurement of Atmospheric 

Constituents," is the final report on investigations performed for the 

National Aeronautics and Space Administration (NASA) by the Institute for 

Atmospheric Optics and Remote Sensing (IFAORS), under Contract NAS1-15198. 

The period of performance was from December 15, 1977 to March 15, 1985. 

' We gratefully acknowledge M. P. McCormick, L. R. McMaster, G. K. Yue, W. P. 

Chu, and R. R. Adams for stimulating discussions and encouragement during the 

course of this work. 
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SUMMARY 

Since atmospheric p a r t i c u l a t e s  and gaseous spec ie s  (such a s  ozone) 

p lay  a v i t a l  r o l e  i n  t h e  modif icat ion and r e t e n t i o n  of t h e  s o l a r  r a d i a t i o n  

i n  t h e  atmosphere due t o  s c a t t e r i n g  and absorp t ion ,  t h e r e  has been an 

enhanced i n t e r e s t  i n  recent  years  i n  the  study of v a r i a b i l i t y  and background 

l e v e l s  of atmospheric aerosols  and gaseous spec ies .  

In  order  t o  f u l l y  understand how ae roso l s  and gaseous spec ie s ,  such a s  

ozone, a f f e c t  t h e  atmospheric q u a l i t y ,  atmospheric chemistry,  r a d i a t i o n  

5 balance,  c l imate  and t r anspor t  processes ,  it i s  necessary t o  obta in  accura te  

d a t a  of t h e i r  o p t i c a l ,  phys ica l ,  s p a t i a l  and temporal p rope r t i e s .  In  order  

t o  achieve t h e s e  goa l s ,  IFAORS was awarded Contract NAS1-15198 by NASA-Langley 

Research Center,  with the  ob jec t ive  of developing advanced space and ground- 

based techniques f o r  determining t h e  c h a r a c t e r i s t i c s  of ae roso l  and gaseous 

spec ie s  and t h e i r  v a r i a b i l i t y .  

Work w a s  performed on t h e  development of t h e  s o l a r  aureole  technique,  

which i s  a simple,  accura te  and p r a c t i c a l  technique f o r  t h e  measurement of 

columnar ae roso l  s i z e  d i s t r i b u t i o n s .  The experimental  and t h e o r e t i c a l  

d e t a i l s  of t h e  technique and i t s  experimental v a l i d a t i o n  are discussed i n  

t h i s  r epor t .  

In  add i t ion ,  a mul t i spec t r a l  s o l a r  e x t i n c t i o n  technique €or t h e  measure- 

ment of ae roso l  c h a r a c t e r i s t i c s  i s  a l s o  discussed.  The var ious  aspec ts  and 

r e s u l t s  of t h r e e  s a t e l l i t e  techniques,  based on t h e  mul t i spec t r a l  measurement 

of horizon limb rad iance ,  s o l a r  occu l t a t ion ,  a s  i n  SAM I1 and SAGE, and 

upwelling rad iance ,  a s  i n  LANDSAT and GOES sa te l l i t es ,  a r e  discussed.  

The co r rec t ions  t o  the  ae roso l  ex t inc t ion  measurements due t o  t h e  

forward s i n g l e  and mul t ip le  s ca t t e r ed  r a d i a t i o n  e n t e r i n g  t h e  d e t e c t o r ' s  
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f i e l d  of view along with the d i r e c t  r a d i a t i o n  a r e  a l s o  discussed f o r  both 

l a s e r  transmissometry and s o l a r  radiometry. Also discussed a r e  the 

simulation of l i m b  s o l a r  aureole  radiance,  and the  v a r i a b i l i t y  of ozone 

a t  high a l t i t u d e s  during s a t e l l i t e  sunr i se / sunse t  events ,  using models 

based on e a r t h ' s  curva ture .  Analyt ical  models used €or  represent ing  t y p i c a l  

ae roso l  s i z e  d i s t r i b u t i o n s  a r e  descr ibed along with examples of t he  

parameterized graphica l  ca ta log  p l o t s .  

v i i i  



SECTION 1 

INTRODUCTION 

Atmospheric p a r t i c u l a t e s  and gaseous spec ies  (such as ozone) have been 

of i n t e r e s t  t o  atmospheric s c i e n t i s t s  and c l ima to log i s t s  f o r  t h e i r  contr ibu-  

t i o n  t o  environmental q u a l i t y ,  v i s i b i l i t y ,  g loba l  r a d i a t i o n  budget, g loba l  

c i r c u l a t i o n  and cl imate  chanqe. 

and poss ib l e  r e t e n t i o n  of t h e  S u n ' s  r a d i a t i o n  i n  t h e  atmosphere due t o  

s c a t t e r i n g  and absorpt ion.  

sky b r igh tness  i s  w e l l  known. 

They p lay  a v i t a l  r o l e  i n  the  modif icat ion 

Their e f f e c t  on t h e  atmosphere v i s i b i l i t y  and 

L .  

In  o rde r  t o  f u l l y  understand how ae roso l s  a f f e c t  atmospheric q u a l i t y ,  

atmospheric chemistry,  r a d i a t i o n  balance,  c l imate  and t r a n s p o r t  p rocesses ,  

it i s  necessary t o  obta in  accurate  da t a  of t h e  phys ica l ,  s p a t i a l ,  and 

temporal p r o p e r t i e s  of ae roso l s  i n  t he  atmosphere. 

The o v e r a l l  ob jec t ives  of t h i s  research program are t o  develop space 

and ground-based remote sensing techniques,  involving t h e  app l i ca t ion  of 

soph i s t i ca t ed  r a d i a t i v e  t r a n s f e r  codes and invers ion  techniques,  f o r  t h e  

determinat ion of aerosols  and gaseous c h a r a c t e r i s t i c s  and t h e i r  v a r i a b i l i t y .  

I n  t h i s  connection, sc ience  support  w a s  provided t o  t h e  NASA Langley 

Research Center under NASA Contract NAS1-15198 on t h e  d i f f e r e n t  t a s k s  l i s t e d  

a s  fol lows:  

1. Continue development of t h e  ground-based s o l a r  aureole  technique 

f o r  monitoring ae roso l  s i z e  d i s t r i b u t i o n s .  

1 2 
2 .  Analysis of SAGE /AEM-B and SAM I1 /NIMBUS-7 experiment da t a  us ing  

t h e  modified SLIC and o the r  computer programs t o  r e t r i e v e  aerosol  charac te r -  

i s t i c s  and o p t i c a l  p rope r t i e s .  
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3 .  Inves t iga t e  t h e  d i u r n a l  v a r i a t i o n s ,  i f  any, i n  t h e  r e t r i e v e d  

ae roso l  and gaseous characterist ics €or s tudying r a d i a t i v e  i n t e r a c t i o n s  

with t h e  atmosphere. 

4. Develop t h e  theory and design of new instrument techniques and 

optimize them f o r  e x t r a c t i n g  maximum information content  about aerosols  

and gaseous species .  

5. Determine t h e  co r rec t ions  due t o  mul t ip le  s c a t t e r i n g ,  p o l a r i z a t i o n ,  

absorpt ion and s p h e r i c a l  atmospheres. 

1.1 ORGANIZATION OF THE REPORT 

I n  o rde r  t o  f a c i l i t a t e  t h e  r eade r s '  understanding t h e  conten ts  of t h e  

work performed under Contract  NAS1-15198, t h i s  r e p o r t  has been organized i n t o  

t h e  fol lowing sec t ions .  

Sec t ion  2 conta ins  t h e  d e t a i l s  of the  work performed on t h e  solar au reo le  

technique f o r  t h e  measurement of aerosol  s i z e  d i s t r i b u t i o n s .  A mu l t i spec t r a l  

s o l a r  e x t i n c t i o n  technique f o r  t h e  measurement of ae roso l  c h a r a c t e r i s t i c s  i s  

discussed i n  Sec t ion  3 .  Sect ion 4 conta ins  t h e  d iscuss ions  on forward 

s c a t t e r i n g  c o r r e c t i o n s  t o  aerosol  e x t i n c t i o n  measurements by both laser 

transmissometry and s o l a r  radiometry. Sec t ion  5 d i scusses  the  a n a l y t i c a l  

modeling of ae roso l  s i z e  d i s t r i b u t i o n s .  Sec t ion  6 gives  the  d e t a i l s  of sa te l -  

l i t e  techniques based on the  measurements of limb rad iance ,  s o l a r  o c c u l t a t i o n  

and upwelling radiance - f o r  the  g loba l  measurement of ae roso l  c h a r a c t e r i s t i c s .  

t 

S t r a t o s p h e r i c  Aerosol and G a s  Experiment 

'Stratospheric  Aerosol Measurement 
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The simulation of limb solar aureole radiance is presented in Section 7. In 

Section 8 the variability of ozone at high altitudes during satellite 

sunrise/sunset events, with the models utilizing the earth's curvature effects 

is discussed. Section 9 contains the acknowledgments, and Section 10, the 

references. 
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SECTION 2 

SOLAR AUREOLE AEROSOL MEASUREMENT TECHNIQUE 

2 . 1  INTRODUCTION 

The solar au reo le  i s  a region of enhanced sky b r igh tness  extending f o r  

about 200 around t h e  s u n ' s  d i sk .  It i s  a t t r i b u t e d  t o  t h e  predominant forward 

s c a t t e r i n g  of  s u n l i g h t  by atmospheric aerosols. The g rad ien t  of angular  

d i s t r i b u t i o n  o f  rad iance  i n  the  s o l a r  aureole region is  h ighly  s e n s i t i v e  t o  

the  aerosol s i z e  d i s t r i b u t i o n .  Measurement of solar au reo le  radiance can, 

t he re fo re ,  be e f f e c t i v e l y  used t o  determine atmospheric ae roso l  p r o p e r t i e s .  

For t h i s  purpose,  a simple photographic solar aureole measurement (PSAM) 

technique, developed i n  1970 (Ref. l), has s ince  been success fu l ly  used t o  

make rad iance  measurements along the  almucantar,  a scan f o r  which t h e  observa t ion  

zen i th  ang le  equals t h e  solar zen i th  angle ,  with local z e n i t h  as t h e  axis  o f  

r o t a t i o n .  Almucantar radiance da t a  i n  t h e  solar au reo le  reg ion  has been 

success fu l ly  used t o  r e t r i e v e  aerosol s i z e  d i s t r i b u t i o n s  (Refs. 2 - 4 ) .  Such 

r e t r i e v a l  methods w i l l  be r e f e r r e d  t o  as t h e  solar aureole  almucantar rad iance  

(SAAR) methods. Subsequently, i n  1974, t h e  photographic solar aureole  

i sophote  (PSAI) method (Refs. 5-7) f o r  determining ae roso l  c h a r a c t e r i s t i c s  

w a s  developed. The techniques f o r  making s o l a r  aureole  radiance measurements 

f o r  t h e  t w o  methods are the same; the  d i f f e rence  l i e s  i n  t h e  s e l e c t i o n  of 

s c a t t e r e d  rad iance  d a t a  f o r  determinat ion of  t he  ae roso l  s i z e  d i s t r i b u t i o n s .  

In  one case, it i s  t h e  almucantar radiance da t a ;  i n  t h e  second, t h e  isophote  

l o c i i  and t h e i r  shapes. In  t h e  following sec t ions  w e  desc r ibe  the  var ious  

a spec t s  o f :  1) t h e  experimental  procedure (Sect ion 2 . 2 )  w h i c h  inc ludes  the  

photography and photographic-photometry a spec t s  of making accura te  measure- 

ments of the  sky radiance d i s t r i b u t i o n  t h a t  a r e  e s s e n t i a l  t o  t h e  two 
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methods; 2) t h e  r a d i a t i v e  t r a n s f e r  and mul t ip l e  s c a t t e r i n g  problems 

(Sec t ion  2 .3) ;  and, 3 )  the  invers ion  of rad iance  da t a ' t o  r e t r i e v e  t h e  a e r o s o l  

c h a r a c t e r i s t i c s  (Sect ion 2 . 4 ) .  

I t  i s  hoped t h a t  t h i s  desc r ip t ion  w i l l  assist o t h e r s  i n  s e t t i n g  up 

t h e i r  own photographic solar au reo le  measurement systems. S ince  a camera 

( s i n g l e  l e n s  r e f l e x )  i s  l i k e l y  t o  be a p a r t  of any labora tory ,  r e l a t i v e l y  

inexpensive,  po r t ab le  photographic systems f o r  making aureole measurements 

can r e a d i l y  be set  up and thus  employed t o  form a g loba l  network of 

: s t a t i o n s  f o r  making measurements of atmospheric ae roso l  c h a r a c t e r i s t i c s .  

2.2 THE EXPERIMENTAL PROCEDURE 

Descr ip t ions  of t h e  photometry, sensi tometry and densi tometry techniques 

employed f o r  e x t r a c t i n g  accura te  sky radiance d a t a  from t h e  photographs are 

given i n  t h e  subsequent s ec t ions .  

2.2.1 H i s t o r i c a l  Background 

For many years ,  Volz (Ref. 8) has taken exce l l en t  color photographs of 

t h e  solar au reo le  by occu l t ing  t h e  sun with var ious  kinds of o b j e c t s ,  such 

as ,  a hand, p i l l a r ,  o r  w a l l  edge, for t h e  purpose of v i s u a l  and q u a l i t a t i v e  

a n a l y s i s  o f  t h e  sky scene i n  connection with h i s  t u r b i d i t y  measurements. In 

1970, on t h e  suggest ion of Professor  A.E.S. Green, t h e  au thor  (A.D. )  s t a r t e d  

making solar au reo le  radiance measurements with a Polaroid Land Camera, 

us ing  t h e  commercially a v a i l a b l e  Black and White Polaroid-46L 
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t ransparency f i l m  (Ref. 1). Since then, such photographic measurements have 

been success fu l ly  performed f o r  t h e  purpose of r e t r i e v i n g  ae roso l  s i z e  

d i s t r i b u t i o n s  (Refs. 2-7). Pho toe lec t r i c  measurements of t h e  solar au reo le  

rad iance  have been made by many researchers  (Refs. 1, 9-15). Subsequently,  

a 35-mm SLR Minolta camera, with a 50-mm f o c a l  l eng th  l ens ,  and Kodak T r i - X  

f i l m  were used ( R e f .  2 ) .  The occu l t a t ion  of t h e  sun w a s  done by a 4.OD 

n e u t r a l  d e n s i t y  f i l t e r  d i s k  loca ted  coax ia l ly  on a support  about 1 . 2  m from 

t h e  l ens .  L a t e r ,  solar au reo le  measurements w e r e  made wi th  a Nikon camera 

'r with  a 55-mm focal l eng th  l e n s ,  and a Hasselblad camera wi th  an 80-mm l e n s ,  

and us ing  Kodak Plus-X f i l m  ( R e f s .  5-6). Excel len t  r e s u l t s  have been ob ta ined  

with t h e  l a t te r  equipment. 

2 .2 .2  Advantages of Photographic Measurements 

Photographic f i l m  o f f e r s  t h e  following advantages over t h e  photo- 

e lectr ic  d e t e c t o r s .  Photographic f i l m  i s  s t i l l  t h e  m o s t  compact recording 

device f o r  s t o r i n g  l a r g e  amounts of information (e .g . ,  a 35-mm f i l m  frame 

t y p i c a l l y  con ta ins  about l o6  ind iv idua l  p i c t u r e  elements,  known as p i x e l s )  . 
The f i l m  also has  t h e  c a p a b i l i t y  of i n t e g r a t i n g  over  exposure times, thereby 

extending i t s  range of d e t e c t a b i l i t y .  Moreover, photography i s  r e l a t i v e l y  

easy t o  use ,  and t h e  s to red  records  of the  scene are permanent. Perhaps 

t h e  g r e a t e s t  advantage of t h e  f i l m  l i e s  i n  the  f a c t  t h a t  t he  complete s o l a r  

aureole  scene can be recorded instantaneously.  A scanning radiometer approach 

could t a k e  s e v e r a l  minutes and introduce s i g n i f i c a n t  measurement e r r o r s ,  

under time-varying condi t ions  (clouds,  smoke plumes, a i r c r a f t  c o n t r a i l s ,  e t c . 1  

I 
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o r  from moving platforms,  such a s  ba l loons ,  a i r c r a f t s  o r  s a t e l l i t e s .  I t  

enables  one t o  e a s i l y  r e l a t e  t h e  radiance along a p a r t i c u l a r  l i ne -o f - s igh t  

t o  some s p e c i f i c  sky d e t a i l  t h a t  may not  be apparent  otherwise.  I n  a d d i t i o n ,  

t h e  use of photogrammetry enables  one t o  make measurements not  only of t h e  

radiance o f ,  say ,  a c loud,  bu t  a l s o  of i t s  dimensions. 

A small  format (35-mm o r  70-mm) camera is  a po r t ab le  system which needs 

no e x t e r n a l  power supply,  and i t s  opera t ing  c o s t s  a r e  r e l a t i v e l y  low. These 

a t t r i b u t e s  f u l f i l l  one of t h e  aims of t h i s  research  e f f o r t ;  namely, t h e  

development of inexpensive systems f o r  making sky radiance and atmospheric 

e x t i n c t i o n  measurements, which may be inver ted  t o  r e t r i e v e  t h e  c h a r a c t e r i s t i c s  

of atmospheric spec ie s .  

, 

The problems gene ra l ly  a t t r i b u t e d  t o  the  use of photographic f i l m  a s  

a photometric measure include such th ings  a s  nonl inear  response,  l i m i t e d  

dynamic range,  r e c i p r o c i t y  f a i l u r e  ( t h e  reduct ion i n  s e n s i t i v i t y  as exposure 

time is  i n c r e a s e d ) ,  adjacency e f f e c t s  (nonindependence of adjacent  p i x e l s )  , and 

r e l a t i v e l y  high g r a n u l a r i t y .  Camera s h u t t e r  speed v a r i a t i o n s  a r e  a l s o  a 

source of e r r o r .  Procedures w i l l  be described t h a t  overcome, minimize o r  

take  account of t hese  e f f e c t s .  

2 .2 .3  Comparison w i t h  Pho toe lec t r i c  Measurements 

Comparison of t he  r e s u l t s  of simultaneous measurements of t h e  s o l a r  

aureole  rad iance  by photographic and pho toe lec t r i c  methods, performed i n  

1970 a t  Ga inesv i l l e ,  F lo r ida  (Ref. 1) and i n  1977 a t  Tucson, Arizona (Ref. 161, 

i n  each case  show extremely good agreement (within 2 percent )  between t h e  two 

s e t s  of da t a .  I n  the  case of the experiment a t  Tucson, Arizona, i n  May 1977, 
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1 

t h e  d a t a  w e r e  ob ta ined  with o u r  system and t h e  Universi ty  of Wisconsin Solar  

Aureole Photometer (Ref. 1 4 ) .  The agreement between t h e  data  i s  shown i n  

Fig. 2 .1 .  

2 .2 .4  Descr ip t ion  of Experimental Equipment 

E s s e n t i a l l y ,  one needs t h e  following equipment: camera, l e n s ,  f i l m ,  

spectral f i l t e r s ,  adapters  f o r  mounting them on t h e  l e n s  and on t h e  camera 

body, a n e u t r a l  d e n s i t y  (ND) occu l t ing  d i sk ,  a t r i p o d  wi th  azimuth and 

e l e v a t i o n  c o n t r o l s ,  a f l a t  s turdy  camera platfarm, an incl inometer  (e.g., 

* a plumb l i n e  and a p r o t r a c t o r )  for e l eva t ion  measurements, and an accurate 

s p i r i t  level f o r  ad jus t ing  t h e  platform t o  a t t a i n  ho r i zon ta l  level. 

Following i s  a b r i e f  desc r ip t ion  of t h e  exposure equipment, which is 

schemat ica l ly  shown i n  Fig.  2 . 2  a l ,  b ) .  . .  

IO' 

a ALWCANTAR RADIANCE 1 
3 '  m 

w t  

5 IO' 

2 '  

0 

9 B e  

.- 0 5 IO I5 20 

SCATTERING ANGLE JI.OEG 

FIG- 2 - 1  P l o t s  of r e l a t i v e  a l m u c a n t a r  r a d i a n c e ,  o b t a i n e d  b y  p h o t o g r a p h i c  

and r a d i o m e t r i c  s y s t e m s ,  as a f u n c t i o n  o f  s c a t t e r i n g  a n g l e  for 

for  A = 0.4 and 0.5 vm. 
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F I G .  2.2 a ) :  S c h e m a t i c  Diagram of the S o l a r  A u r e o l e  Photography Equ ipmen t  

and the Geomet ry  of the E x p e r i m e n t a l  T e c h n i q u e .  

I t-"" 
I I  

F I G .  2.2 b ) :  S c h e m a t i c  Diagram of a S e c t i o n  of the Neutra l  D e n s i t y  F i l t e r  Disk 

A s s e m b l y ,  Showing  the F i l t e r  Held i n  a C i r c u l a r  

Snap-Type  Frame 
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(i) C a m e r a s  and Lenses 

Photography, i n  our  case,  w a s  performed us ing  a Nikon FTN 35-mm 

camera wi th  a 55-mm l ens ,  as w e l l  as a Hasselblad 70-mm camera with an 80-mm 

l ens .  The choice  of l e n s  i s  governed by t w o  competing requirements:  (1) w e  

want t o  photograph as wide an angular f i e l d  as p o s s i b l e  around the  sun, which 

impl ies  a s h o r t  f o c a l  l eng th  l ens ;  while ( 2 )  w e  want t h e  sun image s i z e  t o  be  

l a r g e  enough ( long f o c a l  length)  t o  permit  accurate microdensitometer 

measurements t o  be made of t h e  image o p t i c a l  dens i ty .  A 55-mm l e n s  g ives  a 

.. FOV of about  36O on a 36-mm f i l m  frame, and t h e  80-mm l e n s ,  a FOV of 38O on 

B 56-mm €Tamer w i t h  d iameters  of t h e  r e spec t ive  images of .the half-degree sun 

of  0.48-mm and 0.70-m. These choices  have been found s u i t a b l e  f o r  our  

purposes . 

(ii) Photographic F i l m  

For solar aureole  photography, t he  requirements f o r  t h e  f i l m  

are: good r e s o l u t i o n ,  reasonably high speed, and a s p e c t r a l  response curve 

S(x) which i s  f a i r l y  uniform i n  the  v i s i b l e  region.  Kodak T r i - X  and Plus-X 

f i lms ,  both m e e t  t hese  c r i t e r i a ,  and have, t he re fo re ,  been used ex tens ive ly  

i n  ou r  work. Plus-X (ASA-125) has higher  r e s o l u t i o n  b u t  l o w e r  speed than 

T r i - X  (SA-400) , and so i n  m o s t  of  our  work, w e  used t h e  former. For photography 

a t  A = 0.7 pm, Kodak Plus-X A e r i a l  f i l m  3401 with extended red s e n s i t i v i t y ,  

w a s  used. When using t h e  Hasselblad camera, it w a s  found very  convenient 

t o  load the  f i l m  i n  seve ra l  detachable f i lm  magazines and take  them along 

f o r  f i e l d  use.  
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(iii) Spec t r a l  F i l t e r s  

Narrow band (AX 0.01 pn) i n t e r f e r e n c e  f i l t e r s ,  which peak a t  

= 0.40, 0.50, 0.55, 0.60, and 0.70 pm, were used t o  s implify t h e  inve r s ion  
0 

and could e a s i l y  be mounted i n  f r o n t  of t h e  camera l ens .  The use of  narrow 

bandwidth s i m p l i f i e s  t h e  computations i n  t h a t  it permi ts  t he  i n t e g r a t i o n  

over  t h e  spectral t ransmission curve 

f a c t o r  T(Xo) A X .  I f  broadband Wratten f i l t e r s  a r e  used, then i n t e g r a t i o n  

must be formed over T(X) ( R e f .  3 ) .  Since, i n  genera l ,  i n t e r f e rence  f i l t e r s  

are designed f o r  normal incidence,  then as t h e  incidence angle  (I i nc reases ,  

t h e  peak wavelength of t h e  f i l t e r  is reduced and i s  given by t h e  

r e l a t i o n  (Ref. 17) :  

T ( X )  of  t h e  f i l t e r  t o  be replaced by a 

$ 

where A, is  t h e  peak wavelength a t  normal incidence and m '  i s  t h e  e f f e c t i v e  

r e f r a c t i v e  index of t h e  f i l t e r .  For small  $, t h e  shape of t h e  bandpass 

does n o t  change appreciably except f o r  a small decrease i n  o v e r a l l  t r ans -  

mission.  I n  a converging beam, because of t he  varying angles ,  t h e  e f f e c t i v e  

bandwidth is  broadened and, i n  genera l ,  t h e  peak wavelength is s h i f t e d  t o  

s h o r t e r  wavelengths. The narrower t h e  bandwidth, t h e  m r e  not iceable  are t h e  

e f f e c t s  o f  t h e  angle  change. 

On the  o the r  hand, an increase  i n  temperature causes  i n t e r f e r e n c e  

f i l t e r s  t o  s h i f t  i n  peak wavelength t o  l a r g e r  wavelengths due t o  t h e  expansion 

of  t he  l a y e r s .  For example, s o m e  t yp ica l  f i l t e r s  a t  room temperature show a 
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s h i f t  of approximately 0.004 percent  o f  the  peak wavelength per OC. The 

shape T ( h )  o f  t h e  bandpass curve and the  t ransmission o u t s i d e  t h e  bandpass 

are important ,  as they can g r e a t l y  e f f e c t  t he  unwanted "noise" background. 

Thus, t h e r e  i s  some advantage i n  choosing s l i g h t l y  broader bandpass 

f i l t e r s .  Invers ion  of aureole  s c a t t e r i n g  da ta  seems t o  be r e l a t i v e l y  more 

s e n s i t i v e  to t h e  f i l t e r  peak wavelength than to t h e  f i l ter  bandwidth. 

( i v )  The Neut ra l  Density Disk Assembly 

The n e u t r a l  d e n s i t y  (ND) d i s k ,  made up of a 4.OD Kodak Wratten 

f i l t e r  having a diameter s l i g h t l y  l a r g e r  than t h a t  of t h e  camera l e n s ,  is 

mounted i n  a narrow c i r c u l a r  snap type frame with a t h i n  stem at tached  t o  it. 

This complete u n i t  w i l l  be r e f e r r e d  t o  as t h e  "neu t r a l  d e n s i t y  o r  ND lollipop." 

Of t h e  s e v e r a l  des igns  of t h e  ND l o l l i p o p  t e s t e d ,  t h e  one t h a t  minimized the 

amount of edge r e f l e c t i o n s  and d i f f r a c t i o n  e f f e c t s  i s  shown schematical ly  

i n  Fig.  2 .2  b) . 
The l o l l i p o p  stem is  mounted upr ight ,  on a support  rod, about 

1 .2  m i n  f r o n t  o f  t h e  i e n s ,  so t h a t  t he  ND d i sk  i s  coax ia l  with t h e  l ens .  

Its p o s i t i o n  along t h e  support  rod can be ad jus ted .  All metal p a r t s  are 

pa in t ed  black t o  minimize r e f l e c t i o n s  and g l i n t ,  which are nea r ly  impossible 

t o  eliminate a t  graz ing  angles  of incidence.  The Wratten ND f i l t e r  does no t  

u sua l ly  have a f l a t  spectral response b u t  t y p i c a l l y  v a r i e s  with 

i n  t h e  s p e c t r a l  range 0.4 pm and 0.8 pm, a s  shown i n  F i g .  2 .3 .  

D N D ( h )  

The use o f  4 . O D  f i l t e r ,  i n s t ead  of an opaque occu l t ing  d i sk ,  

permits  t h e  s u n ' s  d i s k ,  which i s  lo4 t o  lo6 times b r i g h t e r  than t h e  sky 

(Fig.  1 i n  Ref. l), to  be photographed by suppressing t h e  g l a r e  and f lare  
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effects. The "noise" due to these effects is reduced to within the fog 

level of the film. The sun's image not only provides the exact location of 

the sun's disk for measuring angular distances accurately, but, in addition, 

provides a reference optical density level relative to which the entire 

photograph can be calibrated. 

Glass ND filters were also tried, but because of their much 

heavier weight and greater inertia, it was often difficult to dampen their 

small oscillatory motions in the breeze outside, thereby reducing the changes 

of taking of good solar aureole photographs. 
1 

2.2.5 Photography of Sun and Its Aureole 

Described in the following is a step-by-step procedure for taking 

quality solar aureole photographs with an SLR camera (Hasselblad): 

1. The camera platform is mounted on a sturdy tripod, and the tripod 

adjusted until the camera mounting plate is completely horizontal, as determined 

by an accurate spirit level. 

2. The camera is mounted on the mounting plate, such that the lens axis 

is parallel to the plane of the inclinometer and the camera mounting plate 

(Fig. 2.2 a). 

3 .  The inclinometer, consisting of a protractor behind a plumb line, 

is adjusted so that the elevation angle reads 90°. 

4. The long support rod is then mounted on the platform and the alignment 

of the ND-disk adjusted, by watching through the viewfinder, such that the disk 

is coaxial with the camera lens, with its plane parallel to the lens. The disk 

is held at about 1.2 m ( 4  feet) from the lens; but its position can be adjusted. 
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5. A 2.OD ND f i l t e r  i s  i n s t a l l e d  on t h e  l e n s  and the  l e n s  i s  manually 

The reason f o r  using t h e  smallest poss ib l e  f - s top  i s  stopped down t o  €/22. 

t o  ob ta in  t h e  l a r g e s t  poss ib l e  depth-of-f ie ld ,  so t h a t  everything from t h e  ND 

d i s k  t o  i n f i n i t y  i s  focused as sharp ly  a s  p o s s i b l e  on t h e  f i lm  plane.  

6. Adjust t h e  tripod e l eva t ion  and azimuth such t h a t  t he  ND d i s k  shadows 

t h e  lens  completely and concent r ica l ly .  Then,by looking through t h e  viewfinder ,  

f i n e  adjustments  of t h e  t r i p o d  azimuth and e l eva t ion  con t ro l s  are made u n t i l  t h e  

solar d i s k  appears  centered i n  the  ND disk .  

good q u a l i t y  pictures (Fig. 2.41, s ince  i n  such a pos i t i on ,  g l i n t  and other 

r e f l e c t i o n  e f f e c t s  are minimized. 

t h e  ND-disk may sometimes g ive  p i c t u r e s  which show t h i s  edge r e f l e c t i o n .  

This cen te r ing  is important t o  a s s u r e  

A photograph wi th  t h e  sun of f -center  w i th in  

F I G .  2 . 4 :  Example of Good Q u a l i t y  Pho tograph  of the S u n  

and i t s  Aureole 
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7. Focus the lens to twice the distance between the lens and the occulting 

disk and stop the lens down to its smallest opening. This will have the effect 

of placing the occulting disk at the near limit of the "depth of field," as 

defined by the circle of confusion (Ref. 18) whose diameter is given by 

2 F 
f(u - F) c =  

where F is the lens focal length, u is the focus distance and f is the lens 

f/stop. When the resulting negatives are scanned on the microdensitometer, 

,the scanning aperture, as projected onto the specimen, should be adjusted 

to be equal to or greater than c as defined above. 

8 .  Remove the 2.OD ND-filter, cycle the camera and attach the film 

magazine. A remote shutter cord is useful to minimize disturbance of the 

ND occulting disk. 

9. Mount the wavelength filter on the lens and take a series of photographs 

at shutter speeds, bracketing those that are predetermined as optimum for each 

wavelength filter. The optimum exposure times used for solar aureole photography 

through wavelength filters primarily depend on the filter bandwidth and peak 

transmittance, speed, spectral response, and processing of the film, lens 

f/stop, atmospheric haze and the sun's elevation. Repeat exposures for each 

wavelength filter in succession. For example, for wavelength filters 

( h  400 nm - h 650 nm) with bandwidth Ah - 8 nm - 10 nm, Kodak Plus-X (ASA-125) 
Panchromatic film, lens aperture f/22, relatively clear skies, solar zenith 

angles between 15O to 60°, the optimum exposure time was found to be 1/15 to 

1/30 second. The film was processed for photographic gamma close to unity. 

These exposure times should be considered as a starting point, from which one 

can determine the appropriate exposure times for one's own set of conditions. 
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We found t h a t  taking photographs a t  four exposure t i m e s  from 1/8 t o  1/60 second 

almost always provided a t  l e a s t  one analyzable negat ive under t h e  aforementioned 

condi t ions .  The c r i t e r i o n  f o r  a good analyzable s o l a r  aureole  exposure is t h a t  

t h e  o p t i c a l  dens i ty  a t  t h e  edge of t he  negat ive be only s l i g h t l y  g r e a t e r  than 

the  dens i ty  of t he  unexposed p a r t  of t he  f i lm ,  with t h e  processing gamma 

adjus ted  t o  p l ace  the  h ighes t  dens i ty  reading,  including t h e  occul ted  sun, 

wel l  below the  shoulder of t he  c h a r a c t e r i s t i c  curve and within the  range of 

t h e  densitometer employed. 

10. The time of day a t  which photographs a r e  taken a r e  noted, and a t  

; each of t hese  t i m e s  t h e  s o l a r  z e n i t h  angle  is  read by t h e  plumb-line. 

The e n t i r e  photography sequence should be completed as quickly as poss ib l e  

(less than a minute) so t h a t  t h e  s o l a r  zen i th  angle and sky condi t ions  can be 

assumed t o  remain p r a c t i c a l l y  cons tan t  f o r  t h a t  s e t  of photographs. 

25 cm of each f i l m  r o l l  should be l e f t  unused f o r  performing f i l m  sensi tometry 

About 

i n  t he  l abora to ry  p r i o r  t o  processing of t he  f i lm.  

2.2.6 Laboratory Photgraphic Calibration Techniques 

(A) Sensitometry 

(i) Exposure 

The photographic e f f e c t  o r  t he  developed image o p t i c a l  dens i ty  D 

i nc reases  up t o  a c e r t a i n  l i m i t  w i t h  increas ing  exposure E ,  which i s  def ined 

by (Ref.  19-20) 

E = It ( 2 )  

where I i s  t h e  i n t e n s i t y  of i nc iden t  l i g h t  and t t h e  exposure time. 

The r e l a t i o n  between t h e  dens i ty  D and the  amount of exposure i s  usua l ly  

expressed by p l o t t i n g  D vs loglOE on l i n e a r  graph paper .  The p l o t  i s  
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referred to as the characteristic curve or the H-D curve (after Hurter 

and Driffield). In the linear portion of the curve, the density D is 

given by the relationship 

where y, the slope of the straight portion of the plot is called the photo- 

graphic gamna, D is the gross visual density, DF is the base-plus-fog 

density, and EF is the extrapolated exposure corresponding to zero density 

above base plus fog (Fig. 2.5). Typical values of y range between 0.9 and 

1.2 for Kodak Plus-X film when processed in the way described below. 

In our case, the H-D curve was obtained by performing film sensitometry 

(Ref. 21) on the unexposed portion of the film for each roll before it was 

processed. An EG&G Xenon Flash Senitometer, which provides uniform illumination 

over the entire length of a Kodak No. 2 Step Tablet was used for this purpose. 

The step tablet has 21 calibrateddxsity steps, ranging from 0.04D to 3.04D. 

A Wratten 1.OD filter was installed inside the sensitometer, along with an EG&G 

three-line filter, to control the exposure intensity. A sufficient length of 

unexposed film was pulled from the film magazine (in total darkness) to cover 

the sensitometer exposure plate and the step tablet, making sure that the f i l m  

emulsion side faced the plate. The sensitometer cover was closed and the film 

was exposed for 1/100 second. 

(ii) Processing 

Once sensitometric exposure has been completed, the film is ready 

for processing. Uniform processing is required for photographic photometry. 

Ideally, use of a sensitometric processing machine is recommended. However, such 

equipment is not generally available to the researcher. While commercial 
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I , r o l l e r  t r a n s p o r t  p rocessors  a r e  q u i t e  adequate f o r  p i c t o r i a l  photography, 

forced process ing  us ing  r e l a t i v e l y  high temperatures o f t e n  r e s u l t s  i n  l o n g i t u d i n a l  

s t r eak ing ,  render ing  t h e  nega t ives  useless f o r  au reo le  app l i ca t ion .  S imi l a r ly ,  

use of rewind processors  produced ob jec t iona l  end-to-end development v a r i a t i o n s  

and l o c a l i z e d  turbulance  e f f e c t s .  These problems have been l a r g e l y  overcome by 

use of s p i r a l  r e e l  p rocessors  i n  combination with chemistry and techniques-which 

a r e  extremely t o l e r a n t  t o  unavoidable procedural  v a r i a t i o n s .  The Kodak Plus-X 

f i lm  is  developed i n  undi lu ted  Kodak D-76 developer f o r  11 minutes a t  68O F. 

Agi ta t ion  i s  continuous f o r  t h e  f i r s t  30 seconds and 5 seconds every 30 seconds 

t h e r e a f t e r  u n t i l  development i s  complete. The remainder of  t he  process  is 

standard.  Uniform and repea tab le  development t o  a gamma of  about 1.0, low 

fog, and r e l a t i v e l y  f i n e  g r a i n  a r e  t h e  r e s u l t s .  

dynamic range which a s su res  t h a t  a l l  d e n s i t i e s  f a l l  w e l l  below t h e  shoulder  of 

t h e  H-D curve over  a v a r i e t y  of sky condi t ions  and f i l t e r  wavelengths. 

(B) Densitometry 

An added bonus i s  extended 

I n  t h e  f i e l d  of photographic densitometry and sensi tometry,  t he  concept 

of o p t i c a l  d e n s i t y ,  a s  a measure of t he  a t t enua t ion  of r a d i a n t  f l u x ,  is of 

fundamental importance. When t h e  a t t enua t ion  r e l a t e d  t o  t h e  f l u x  t r ansmi t t ed  

by t h e  developed image, t h e  term transmission d e n s i t y  is  used. 

The t ransmission d e n s i t y  i s  def ined ,  i n  gene ra l ,  a s  t h e  logari thm t o  

t h e  base 10  of t h e  opac i tance  (0) o r  r e c i p r o c a l  t ransmi t tance  (TI of t h e  

developed image, which is  j u s t  t h e  r a t i o  of t h e  r a d i a n t  f l u x  

on t h e  developed image t o  the  r a d i a n t  f l u x  

Q0 i nc iden t  

aT t r ansmi t t ed  by t h e  image. 
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Densitometry has been performed by both a Joyce-Loebl (J-L) Scanning 

Microdensitometer/Isodensity tracer (MDM) and a MacBeth transmission-type 

spot densitometer. The former not only provides a digitized magnetic tape 

output, but also a graphical plot of isodensity contours (Fig. 2.6 a)). Iso- 

densities are lines of equal optical density in the image space; and isophotes 

are lines of equal brightness in the object space. 

and photometry relations described in later sections, one can obtain the 

solar aureole isophotes (Fig. 2.6 b)) from the MDM digital density data output an 

By the use of photogrammetry 

the optical density along the almucantar (Fig. 2.7) from the spot densitometer 

measurements; whereas the J-L Microdensitometer measures the specular density, 

the spot densitometer measures the diffuse density. The ratio of the specular 

to the diffuse densities is generally defined as the Callier factor (Ref.l19), 

which is typically larger than 1.0. In both cases, the almucantar or the sun 

vertical measurements, are made by the use of photogrammetric formulas (Ref. 221, 

which provide the x and y coordinates on the photograph, for points along 

the almucantar and sun-vertical projections. In the case of the spot densitomete. 

positioning of the spot on the photograph is done manually, a process which is 

cumbersome and prone to error. However, after some experience, it is possible 

to obtain accurate density measurements. This is shown in Fig. 2.7 by a com- 

parison between the almucantar optical density data, obtained by the two 

types of densitometers, plotted as a function of scattering angle. The plots 

show agreement to within 3 percent between the two sets of data. It should be 

pointed out that the H-D curves (Fig. 2.8) obtained by the two densitometers 

differ in slope, since one measures specular, and the other, diffuse densities. 

The detailed method for  making accurate almucantar optical density measurements 

with a spot densitometer is described in Appendix I. 
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F I G .  2.6 a): Isodensity Contours of the Solar Aureole Photograph, 

Made with a Joyce-Loebl Microdensitometer Isodensitracer. 

15 

10 
E 
>- 

3 

" 5 I: 25 30 35 
x, 

ISOPHOTES 

F I G .  2.6 b ) :  Computer Isophotes Corresponding to the Photograph 

in F i g .  2.6 a) 
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R E L A W E  LOG, EXPOSJf?E 

FIG. 2.8: H-D Curves Obtained by the Two Densitometers--Joyce-Loebl 

Microdensi t omet er and Spot Densi tome t er . 

2-20 



(C) Off-Axis Illumination Distribution 

When a lens forms an image of an extended object, then the illumination 

for the off-axis image points, even where there is no vignetting, is usually 

lower than for the coaxial point. The intensity distribution at an angle 8 

in the image space is ideally given by cos4 8. The deviation from the "cosine 

fourth" relationship can be brought about by several means; for example, when 

the lens construction is such that the apparent size of the pupil increases for 

the off-axis points. In that case, the off-axis distribution may be given by 

some other power, a ,  of cosine 8. The determination of the off-axis distribution 

' of intensity for the camera should be performed both with and without spectral 

filters wunted on the lens. Procedures for making such a determination are 

described in detail in Ref. 23, and so will not be presented here. The 

value of a varies with different spectral filters mounted on the lens 

(Ref. 2 3 ) .  A plausible explanation for this variation is that it results from 

the combined effects of spectral behavior of the wavelength filters as a function 

of incidence angle and the film. 

(D) Spectral Response of the Film 

Kodak Plus-X film has a spectral response which varies slightly about a 

uniform average over the entire visible range. Tests were performed to study 

the spectral dependence of the H-D curve for the film, by performing 

sensitometry on the film through Wratten filters placed inside the sensitometer. 

For Kodak Plus-X film, sensitometry was performed with three Wratten filters 

(Nos. 72B, 75, and 93) and the characteristic curves obtained therefrom 

were, for all practical purposes, identical in shape. 

2 .2 .7  Photogrammetry Theoretical Relations 

The formulas relating to the film projection of different points in the 

sky are given in Ref. 22. The almucantar scan projects as a conic on the 
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film (Fig. 2.9) .  

photographic frame, then the film projection of the almucantar is a conic 

defined by the relation 

If the sun‘s image is at the geometrical center of the 

bL L a 

- ypc - yp - y,, x = x - x - (xc, y,), (xp, yp) are the coordinates PC P c’ where 

of the center C and a point P on the frame; a and b are the 

Y.mm - 

F I G .  2.9: C u r v e s  R e p r e s e n t  F i l m  P r o j e c t i o n s  o f  A l m u c a n t a r  Scans f o r  Sun a t  

V a r i o u s  So lar  Zenith A n g l e s  f o r  a C a m e r a  Lens o f  F o c a l  L e n g t h  80 mm. 

ORIGINAL PAGE IS 
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I 
c h a r a c t e r i s t i c  d i s t ances  of  conics.  I f  the  solar z e n i t h  ($s i s  45O, 

t h e  conic  is  a parabola  

- x ) 2  
1 - -  

'p - 'C - 2F IXp C 

where F i s  t h e  l e n s  f o c a l  length.  I f  ($s > 4S0, t h e  conic  is  a y-hyperbola, 

with a and b being t h e  d i s t ances  from cen te r  t o  v e r t e x  and covertex;  

($s < 4S0, t h e  conic  is  an e l l ipse,  with a and b as t h e  semimajor and s e m i -  

minor axes. This  i s  i l l u s t r a t e d  i n  Fig.  2 .9  f o r  l e n s  f o c a l  lengths  55mm and 80 mm. 

' The d e t a i l s  of formulat ions and r e s u l t s  are given i n  Appendix 2 .  

2.2 .8  Photometry Relat ions 

Photographic-photometry i s  concerned wi th  r e l a t i o n s  tha t  e x i s t  between 

the r a d i a t i o n  f lux  from t h e  o b j e c t  space and the  r e s u l t a n t  opt ical  d e n s i t y  

i n  t h e  image space,  t h e  main problem being t h a t  of  r econs t ruc t ing  i n t e n s i t y  

o r  rad iance  l e v e l s  i n  o b j e c t  space by means of  t h e  image space o p t i c a l  

d e n s i t y  d a t a .  From t h e  t h e o r i e s  of photographic image (Ref. 2 1 1 ,  o f f - ax i s  

i l l umina t ion  (Ref. 2 3 )  and photogrammetry (Ref. 221, w e  o b t a i n  var ious  

formulas t h a t  re la te  t h e  dens i ty  of each p o i n t  on t h e  photograph with rad iance  

of  a corresponding d i r e c t i o n  i n  the  sky. The r e l a t i o n s  f o r  t he  photometry 

are given i n  Refs.  1 J-?d 19. They a r e  r ecap i tu l a t ed  here  f o r  t he  sake of 

completeness. 

The image i r r ad iance ,  I ( A ) ,  of  a p o i n t  P on the imageplane  a t  an 

from the  geometrical  cen te r  of t he  image i s  r e l a t e d  

P 

6P 
angular  d i s t a n c e  

t o  t h e  radiance B ( A )  of t he  scene element i n  t h e  sky by the  formula 

(Ref. 24)  : 

P 
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2 a 2 2  I p ( X )  = B ( A )  F (cos  6 ) T TJ4V f 
P P g  

where F = f o c a l  l eng th ,  V = image d i s t ance ,  f = F/d ( t h e  f-number), 

d = aperture diameter,  T = transmission f a c t o r  due t o  r e f l e c t i o n  and 

absorp t ion  by g l a s s ,  

v i g n e t t i n g  by t h e  l e n s  b a r r e l ,  and CL = exponent of cos ine  6 giv ing  t h e  

g 

Tv = t ransmission f a c t o r  a t  p o i n t s  o f f - ax i s  due t o  

P 
off-axis i l l umina t ion  d i s t r i b u t i o n  for t he  l ens .  

I f  t h e  o b j e c t  is  a t  i n f i n i t y ,  as it is  i n  our  case, 

I 

But I ( 
P 

= B ( A )  T T (cos 6 Ia/4f 2 
P g v  P 

1 i s  r e  a t e d  t o  t h e  o p t i c a l  d e n s i t y  D € o r  t.,e l i nea r  port-m of 
P 

t h e  H-D curve by t h e  photographic equation 

I ( X ) t  AA = lo(DP-%)/y 
P 

so t h a t  

-a B ( A )  = K 10  Dp/U (cos 6 ) 
P P 

where 

K = [ T T :f2 A X t  ] 

( 7 )  

(9) 

This equat ion then  r e l a t e s  t h e  dens i ty ,  D,  of t h e  p o i n t  P t o  t h e  sky 

radiance a t  angle  6 from the a x i s  f o r  t h e  l i n e a r  p o r t i o n  of the H-D curve. 
P 
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If w e  know t h e  s p e c t r a l  i r r a d i a n c e ,  

-2 -1 

H ( X )  , measured i n  abso lu te  

Ds, for t h e  sun ’ s  u n i t s  (pw c m  p ) ,  which produces a c e r t a i n  dens i ty ,  

image, it may be  poss ib l e  t o  c a l i b r a t e  t he  photographic image i n  abso lu te  

u n i t s .  The absolute c a l i b r a t i o n  of  t h e  film r e q u i r e s  t h a t  a known o p t i c a l  

dens i ty  on t h e  f i l m  correspond t o  a known i n t e n s i t y  of  a d i r e c t i o n  i n  sky, 

t h e  co-d i rec t ion  image po in t  of  which is  a t  an angular  d i s t a n c e  

t h e  geometr ical  c e n t e r  0; then the  radiance B ( h )  of sun’s d i r e c t  l i g h t  

i s  r e l a t e d  t o  D by an equat ion s i m i l a r  to Eq. (8): 

6 from 
S 

S 

S 

B (x)l0-DND=1O D s ’ y ( ~ ~ ~  6 S K 
S 

(10) 

where DND is  t h e  d e n s i t y  of the  ND f i l t e r .  

Since w e  photographed the  sun and the  aureole  on t h e  same 

photograph, t h e  K f a c t o r  i s  t h e  same i n  E q s .  (8) and (10 ) .  S u b s t i t u t i n g  K 

from E q .  (9) i n  Eq.  (8) , w e  ob ta in  t h e  radiance f o r  any p o i n t  P i n  t h e  

sky , 

Bp(A) = K 10 DdY (cos 6 ) -a  
P 

where K is t h e  c a l i b r a t i o n  f a c t o r  given by 

I t  i s  e a s i e r  and more accura te  t o  ob ta in  K from Eq.  (11) than from Eq. ( 9 ) .  

2.2.9 Photographic Radiance Measurements 

(A)  Photographic s o l a r  almucantar radiance measurements 

The problem of invers ion  of solar aureole  d a t a  t o  determine aerosol 

c h a r a c t e r i s t i c s  can be made t r a c t a b l e ,  i f  w e  make t h e  fol lowing reasonable  
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assumptions (Ref. 7) , namely that, particles are spherical; polarization 

is neglected in the forward direction; absorption effects are ignored by 

selecting the appropriate wavelength filters to work with; zenith angles are 

kept less than 80°, so that the spherical Earth corrections can be excluded. 

Under these assumptions, theory shows that the almucantar radiance becomes 

independent of aerosol altitude distribution and depends only on the (columnar) 

size distribution, n(r) (Refs. 1, 7, 25-27). In Refs. 1 and 7, the theory 

of solar aureole neglects multiple scattering ( M S )  and considers only single 

scattering (SS); in Refs. 26 and 27, we have shown how MS effects can be 

taken into account in order to obtain more accurate retrieved size distribution 

results. Almucantar radiance can easily be obtained from almucantar optical 

density measurements. 

transfer and multiple scattering problems will be discussed in Section 2 . 3  and 

The theoretical considerations regarding radiative 

those regarding inversion methods in Section 2.4. 

(B) Isodensities and Isophotes 

As defined earlier, isodensities are lines of equal optical density on a 

photographic image; and isophotes, lines of equal radiance in the object 

space. We have used two ways to obtain isodensity contours. One is by the 

J-L MDM isodensitracer which yields isodensity tracings on a sheet of paper 

(Fig. 2.6 a)). The other is by a video scanning color-coded TV system (Spatial 

Data Systems, Inc.) , which gives multicolored isodensity contours, each color 

denoting a specific density value (Fig. 2.10). The contours are displayed 

on a TV screen that can be photographed. The contour mapping by the MDM 

takes about an hour per frame, while that by the video scanner is done 

instantaneously (1/30 sec.). The isophotes are produced by computer graphics 

from the radiance data obtained from the reduction of the digitized optical 

density data output of each photograph. 
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2 . 3  SINGLE AND MULTIPLE SCATTERING CONSIDERATIONS 

S ing le  and mul t ip l e  s c a t t e r i n g  con t r ibu t ions  t o  t h e  circumsolar 

r a d i a t i o n  along t h e  almucantar and sun v e r t i c a l  have been computed 

by a Gauss-Seidel s o l u t i o n  t o  t h e  r a d i a t i v e  t r a n s f e r  equation. In  

t h e  near  forward d i r e c t i o n ,  t h e  mul t ip l e  s c a t t e r i n g  con t r ibu t ions  are 

s i g n i f i c a n t  f o r  o p t i c a l  depths  of t h e  order of 0.4. However, t h e  

shape of t h e  angular  d i s t r i b u t i o n  of almucantar rad iance  up t o  10 

appears  less s e n s i t i v e  t o  mul t ip l e  s c a t t e r i n g .  The r e s u l t s  have been 

compared a g a i n s t  an e x i s t i n g  r a d i a t i v e  t r a n s f e r  code, and have also 

been d iscussed  i n  Refs 2 8  and 29. 

0 

I 

2.3.1 S ing le  S c a t t e r i n g  Theory o f  t h e  So la r  Aureole 

I n  t h i s  s e c t i o n  w e  consider  t h e  s i n g l e  s c a t t e r i n g  (SS) theory,  i n  

which w e  make t h e  fol lowing reasonable  s impl i fy ing  assumptions: 

(1) Par t ic les  are  sphe r i ca l  so t h a t  r e s u l t s  of  t h e  M i e  theory can 

be used i n  computations. 

( 2 )  The atmosphere i s  hor i zon ta l ly  homogeneous and v e r t i c a l l y  

inhomogeneous. 

(3)  Absorption e f f e c t s  are ignored by s e l e c t i n g  t o  work i n  s p e c t r a l  

reg ions  f o r  which atmospheric absorp t ion  is  n i l .  

( 4 )  The p o l a r i z a t i o n  e f f e c t s  are  small f o r  forward s c a t t e r e d  l i g h t  

and can be ignored. 

( 5 )  For r e l a t i v e l y  c l e a r  days ( v i s i b i l i t y  > 15 k m ) ,  t he  M S  e f f e c t s  

a t  t h e  forward s c a t t e r i n g  angles  are s m a l l  compared wi th  SS (Ref 30 and 

can be ignored. 
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(6 )  An average value for the refractive index of all atmospheric 

aerosols is assumed for forward scattering. 

(7 )  The atmosphere is treated as plane-parallel; the spherical Earth 

effects, which become significant for zenith angles 4 larger than 75 , are 

incorporated into the theory by the use of the generalized Chapman type 

functions S ( 4 )  (Refs. 30 and 3 1 )  in place of the secant functions. 

0 

Figure 2.12 illustrates the geometry of the calculation. Shown is an 

acceptance cone dfi originating at the detector and a solid angle dfi' centered 

i at the elemental scattering volume dV at altitude y(km). $ s  and 4 are the 

zenith angles of the Sun and the narrow view cone and w is the dihedral 

angle between the normals to the Sun zenith and view cone zenith planes 

intersecting at dV. The scattering angle J, is then given by the relation 

(12) cos JI = cos @ cos @ - sin @ sin 4 cos w 
S S 

The elementdv is given by 

Zenith Sun 

4 
dY 

F I G .  2.11: T h e  g e o m e t r y  of t he  s k y  s i n g l e  s c a t t e r i n g  p r o b l e m .  
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where the  genera l ized  Chapman type func t ions  

~ ( $ 1  = sec 4 ( f o r  $ 5 75 0 1 

The o p t i c a l  depth def ined by 

f o r  a ray  t r ave r s ing  t h e  d i s t ance  from t h e  Sun t o  the  a i r  m a s s  

element dV is given by 

(14) 

(15 1 

and from t h e  a i r  mass t o  the  de t ec to r  by 

where M denotes a i r  molecules; A, the  ae roso l  spec ie s ;  A ,  t he  wavelength; 

and B '  t h e  volume s c a t t e r i n g  c o e f f i c i e n t  (VSC) (km ) a t  a l t i t u d e  y f o r  
-1 

t h e  j t h  cons t i t uen t .  In  t h i s  paper ,  a l l  q u a n t i t i e s  represented by T ~ ,  f 3 i ,  

P '  and P a r e  func t ions  of G ,  even though t h e i r  6 dependence BA, FA, FA, A 

is no t  i nd ica t ed  i n  t h e i r  representa t ion  form. 

y-dependence of t h e  q u a n t i t i e s .  

The primes denote t h e  

B i  and B i  are def ined by the  fol lowing 

r e l a t i o n s :  

where Q(x, G )  is  the  e f f i c i ency  f a c t o r  (Ref. 32 ) ,  x = 2.rrr/A is  the  p a r t i c l e  

s i z e  parameter,  r 

the complex r e f r a c t i v e  index of  aerosols .  

and r a r e  minimum and maximum values of r and 6 = m '  - i m "  1 2 
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8n3(n2 - 1) (4 + 3d) @,(A) = 
N A 4  (4 - 3d) 

-3 In Eq. 19(b), N is the number of molecules cm ; n, the refractive index 

of the medium, d = 4A/(1 - A); and A is the depolarization of scattered 
light at a scattering angle of 90 €or a linearly polarized incident 0 

radiation with its electric vector perpendicular to the scattering plane. 

For unpolarized incident light, A is replaced by €, = 2 A / ( 1  + A). 

the volume scattering function (VSF) for air molecules (j = MI is 

Then 

where the molecular phase function is 

where p (y) is the dimensionless function representing the altitude 

distribution of molecular density. The VSF for aerosols (j = A )  is 

M 

where the aerosol volume phase function is 

i (4, 15, XI) dr 
2 

and i and i are the Mie intensity functions and k = 21~/x .  1 2 

The sky radiance due to the molecules and aerosols in the volume 

element dV is then given by 
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Integrating over all such elemental volumes, the total single scattered 

sky radiance is 

(j = M, A) (26) 

2.3.2 Multiple scattering contributions to circumsolar radiance 

Questions have been raised as to whether multiple scattering (MS) 

contributions to the solar aureole have any significant effect on the 

retrieval of the SD. This question has been answered in t w o  steps. The 

first step is to compare the contributions to the angular distribution 

of the almucantar radiance in the forward direction due to MS relative 

to those due to SS. 

on the retrieval of the aerosol SD. In this section (2.3.2) , only the 

The second 'step is to determine the effect of MS 

first step will be considered; the second being left to section 2.4. 

Thus, for the purpose of calculating the SS and MS contributions, a 

computer code was developed which employed the Gauss-Seidel Interative 

approach to the solution of the radiative transfer equation €or a plane 
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p a r a l l e l  atmosphere composed of a i r  molecules, ozone and aerosol  p a r t i c l e s .  

Our code is e s s e n t i a l l y  similar t o  t h e  r a d i a t i v e  t r a n s f e r  (RT) code w r i t t e n  

by J. V. Dave (Ref. 33)  except i n  t h e  cons t ruc t ion  of the source matr ix .  The 

d i f f e r e n c e  i n  the t w o  codes is ou t l ined  as follows. 

P r i o r  t o  u t i l i z i n g  our  code i n  a c t u a l  problems, w e  decided t o  check 

some r e s u l t s  obtained by it f o r  SS and M S  radiance con t r ibu t ions  i n  an 

aerosol atmosphere. But, unfor tuna te ly ,  w e  w e r e  unsuccessful  i n  l o c a t i n g  a 

set of s tandard  t a b l e s  of  downwelling and upwelling radiance and p o l a r i z a t i o n  

f o r  atmospheres conta in ing  inhomogeneously d i s t r i b u t e d  aerosol  p a r t i c l e s .  

Dave and Furukawa's tables ( R e f .  34)  and Coulson, Dave and Sekera t a b l e s  

( R e f .  35) are meant f o r  only molecular atmospheres, wi th  and without  ozone, 

r e spec t ive ly .  Therefore ,  t h e  following s t r a t e g y  w a s  adopted. F i r s t ,  it w a s  

decided t o  check the  r e s u l t s  obtained by ours  and Dave's RT codes, using 

i d e n t i c a l  molecular d a t a  inpu t ,  a g a i n s t  t h e  t a b l e s  i n  Refs. 34 and 35. If 

the  t h r e e  sets of values  agreed t o  wi th in  say 1% t o  2 % ,  then one could assume 

t h e  t w o  codes work c o r r e c t l y  f o r  both SS and RT i n  molecular atmosphere. 

Next s t e p  w a s  t o  add ae roso l s  i n t o  t h e  molecular atmosphere, and use  

i d e n t i c a l  ae roso l  data i n p u t  f o r  the two codes and compare t h e i r  r e s u l t s .  

I f  the t w o  sets of r e s u l t s  agreed w i t h  one another  w i th in  1%, then it would 

be s a f e  t o  assume t h a t  our  code was as accura te  as Dave's RT code, which 

w e  t r e a t e d  as our  s tandard  aga ins t  which t o  check. (Plans f o r  checking 

our  code a g a i n s t  o t h e r  codes were considered b u t  abandoned i n  view of t h e  

high computer c o s t s  involved.)  

(i) T h e  G a u s s - S e i d e l  Technique 

Before d i scuss ing  t h e  r e s u l t s  of  t he  aforementioned computations a 

b r i e f  d e s c r i p t i o n  of t h e  t w o  codes and t h e i r  s i m i l a r i t i e s  and d i f f e rences  
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seems appropriate. Both codes are based on a Fourier decomposition method 

of solving the RT equation for downwelling and upwelling radiances and 

polarization. Following Herman's method (Ref. 36), the atmosphere is 

divided into a number of levels, and a Gauss-Seidel iterative scheme is 

employed, passing first in a downward direction, then upward, repeating 

the procedure until convergence is reached. In what follows we consider 

a downwards pass, the extension to upwards pass being similar. 

The downwards intensity at level L (Fig. 2.12) is taken to be the 

downwards intensity at level L-1, attenuated by its passage through the 

intervening layer, plus the source matrix contribution from this layer. 

A layer is characterized by an optical thickness, 'C, single scattering 

albedo, w and turbidity factor, T (= the ratio of particulate to total 

extinction coefficients), each assumed constant. 

- 
0, 

To obtain the source matrix for a given layer, one combines the 

optical properties of the layer with the average of the intensities of 

the levels which bound it. Using the Gauss-Seidel technique, the most 

recent values of the intensity are used at each iteration stage. Dave's 

code requires four subroutine calls: one each for the upward and downward 

intensities of each level involved; whereas, our code requires only two 

calls: The two levels being handled simultaneously, which results in a 

saving of about 20% in execution time. 

(ii) C o m p a r i s o n  of the C o m p u t e r  C o d e s  

To illustrate the difference between codes, we have used the data 

set which Dave employed as his example in his documentation (Ref. 3 3 ) .  

The important input data information is listed in Table 2.1. The vertical 

aerosol profile is that of Ref. 3 3  and the ozone absorption is ignored. 

2-34 



LEVEL L-2  
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LEVEL L-l 

LAYER L - l  

LEVEL L 

I (L - 2  + I  

I ( L - I ,  - p )  

I ( L , - p )  

LAYER L 4 T(L)  , T ( L I , G ~ ( L )  

T (L-2) T(L-2) Go (L-2) 

I 
1 

T (L-1)  ,T(L- I )  Go(L- 1 )  
I 
I 

LEVEL L+I I ( L + I *  

/ - TRANSMITTED CONTRIBUTION 

/ - SOURCE MATRIX CONTRIBUTION 
t 

I 
KEY 

FIG. 2.12: Schematic Illustration of atmospheric layers, transmitted and 
source matrix contribution to sky radiance. 
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TABLE 2.1: I n p u t  Data 

Wavelength = 0.55 p m  

T = 0.1 Rayleigh optical depth R 

TPS = 0.01026 

r = 0.00236 

Particulate scattering optical depth 

Particulate absorption optical depth PA 

Ozone absorption optical depth 

Total optical depth 

Solar zenith angle 

Unattenuated solar flux 

T = 0.0 
O3 
r = 0.11262 

= 60° 
@ SUN 

F = 100T 

Aerosol Characteristics: 

Refractive index 

Size distribution 

m = 1.50 - i 0.03 

n(r) = C , 0.03 llm I r 5 0.1 pm 

-4 
= C(r/O.l) 0.1 pm 5 r 5 2.0vrn 

= 0 otherwise 

The value of C is determined by T PS 
-10 -1 

-10 -1 

-10 -1 

Volume scattering coefficient B = 4.85 x 10 cm per particle 

Volume absorption coefficient 8 = 1.12 x 10 cm per particle 

Volume extinction coefficient B = 5.97 x 10 cm per particle 

scat 

abs 

ext 
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The output  from Dave's code checks ou t  t o  be i n  complete agreement with 

t h a t  publ ished i n  Ref. 30. However, t h e  output  from our  code d i f f e r s  

from these  r e s u l t s ,  most notably i n  the  near  forward d i r e c t i o n .  This is  

i l l u s t r a t e d  i n  Tables 2 .2  and 2.3 and In Fig. 2.13. 

Rather than  reproduce t h e  e n t i r e  output  of  each code (a t o t a l  of 

more than 3,000 numbers each j ,  w e  give the  r e s u l t s  f o r  t he  almucantar scan 

(observat ion z e n i t h  angle  equal t o  s o l a r  zen i th  angle)  i n  T a b l e  2 . 2  and, t h e  

sun -ve r t i ca l  scan (observat ion azimuth angle equal  t o  solar azimuth angle)  

i n  T a b l e  2.3. I n  add i t ion ,  t h e a l m u c a n t a r r e s u l t s  f o r  noground r e f l e c t i v i t y  

(A = ) )  are p l o t t e d  i n  Fig.  2.13. Each table c o n s i s t s  of  f i v e  columns: 

t he  f irst  t w o  g ive  Dave's r e s u l t s  f o r  ground r e f l e c t i v i t i e s  (A) of 0.0 

and 0.25; t h e  l a s t  t w o  g ive  r e s u l t s  of our  code; t h e  middle column g ives  

t h e  s i n g l e  s c a t t e r i n g  (SS)  r e s u l t s .  

The most s t r i k i n g  (and s i g n i f i c a n t )  r e s u l t  i s  contained i n  t h e  very 

f i r s t  row of T a b l e  2 . 2  where we see  t h a t  t h e  SS con t r ihu t ion  f o r  s c a t t e r i n g  

angle  I$ = 0 i s  g r e a t e r  than Dave's RT r e s u l t s  f o r  both values  of A .  This  0 

can also be seen c l e a r l y  i n  Fig. 2 .13 ,  where Dave's r e s u l t s  a r e  shown as 

a broken l i n e .  Turning t o  T a b l e  2 . 3 ,  w e  see  t h a t  t h e  SS cont r ibu t ion  i s  

higher  than Dave's r e s u l t  w i t h  A = 0.0 f o r  z e n i t h  angles  of 50°, 60°, and 

70°. 

In  o rde r  t o  make su re  t h a t  our  SS r e s u l t s  are indeed c o r r e c t ,  w e  

compared them with Dave and Furukawa's t a b l e s  (Ref. 34) f o r  a i r ,  ozone 

b u t  no ae roso l s ,  and found agreement between them t o  within 0 . 5 % ,  f o r  

z e n i t h  angles  up t o  75O. 
0 

For zen i th  angles  of  80 and 85O, t he  discrep-  

ancy was only s l i g h t l y  g r e a t e r .  W e  f e e l  the  reason f o r  t h i s  small  d i s -  

crepancy, is due t o  t h e  F o u r i e r  decomposition of  the  phase func t ion  used 

i n  Box and Deepak's (and Dave's) code, which c l e a r l y  m u s t  be t runca ted  a t  

some f i n i t e  order .  
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IRT(Dave)  and I ( B D )  obtained b y  SS ss' RS TABLE 2.2: A l m u c a n t a r  Rad iances  I 

t h e o r y ,  D a v e ' s  and Our C o d e s ,  r e s p e c t i v e l y  

Azimuth IRT (Dave) ISS IRT (BD) 
Angle , 

( Deg ) A = 0.0 A = 0.25 (A = 0.0)  A = 0.0 A = 0.25 

0 15 e556 16 e627 17.015 18 .oo3 19.056 

30 7 .a64 '8.935 7.209 8.142 9.195 

60 5.450 6.522 4.655 5.452 6 S O 6  

90 4 .oa6 5.158 3. 352 4.039 5.092 

120 3 .a43 4.915 3.123 3.780 4 .a33 

150 4.293 5.365 3.530 4.214 5.268 

Lao 4.588 5.660 3.796 4.501 5.550 

(Dave) and IRT ( B D )  obtained b y  ssf IRT TABLE 2.3: Sun-vertical R a d i a n c e s  I 

SS t h e o r y ,  D a v e ' s  and Box and D e e p a k ' s  ( B D )  RT C o d e s ,  r e s p e c t i v e l y  

Z e n i t h  ISS 
( A  = 0.0)  A = 0.0 A = 0.25 Angle A = 0.0 A = 0.25 

0 

10 

2 0  

30 

40 

50 

60 

70 

80 

2.486 

2.903 

3.514 

4.407 

5.812 

a .574 

15.556 

15.225 

20 .a89 

3.044 

3.470 

4.107 

5.048 

6.532 

9.423 

16.627 

16.730 

23.495 

2 A57  

2.553 

3.141 

4.030 

5.500 

a .613 

15.283 

17.015 

19.720 

2.471 

2.905 

3.553 

4.526 

6 . 1 1 2  

9.388 

18.003 

16.624 

2 1  A 9 2  

3.017 

3.459 

4.132 

5.152 

6.816 

10.220 

19.056 

18.110 

24.482 
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ALMUCANTAR RADIANCE I 
2o t 

I- 

A =  0.55 83un=600 T =0.11262 

T R a  0.1 TP3* 0.01026 

= 0.00236 
To3=o*o TPr 

0 30 O 60 O 90 120 O 150° 180° 

AZIMUTH ANGLE 

0 0 
FIG. 2.13: A l m a c a n t a r  Radiance versus a z i m u t h  a n g l e  ( 0  -180 ) f o r  Iss, 

I (Dave) and I ( B D ) .  RT RT 
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As an alternative verification, we have used the formula of Green, 

et al. (Ref. 1) for the almucantar S S  radiance, viz. 

where R and P are the (normalized) Rayleigh and particulate phase func- 

tions, JI is the scattering angle and4sis the solar zenith angle. 

is a special case of the more general formula for SS scattering (Ref. l), 

since for almucantar scan the observation angle is equal to 0.  To obtain 

the first value in Table 2.2, we choose JI = Oo, so that R(0) = 3/2. From 

Eq. (1) 

earlier results in Dave's documentation (Ref. 5 1 ,  P(0) = 26.94. Using 

these values along with the data in Table 2.1, yields Iss(0) = 17.2, in 

excellent agreement with our result in Table 2.2. 

Figure 2.13 shows that Dave's code gives a flatter almucantar radiance 

scan, than our code, implying a less forward-peaked phase function. 

The phase function is constructed a s  a linear combination of Rayleigh 

and particulate phase functions, and these results suggest that Dave's 

code incorporates too little of the particulate contribution to the 

total phase function. 

In constructing the source matrix for, say layer L, it is necessary to 

combine the scattering properties of layer L with the intensities of levels 

L + 1 and L. It seems that in Dave's code, the intensities of level L + 1 

are combined with the appropriate scattering properties of layer L, but the 

intensities of level L are combined with the turbidity factor of layer L - 1 

(i.e., the layer above the correct layer). A s  <he scale height of the aerosol 

profile is much smaller than that for the molecular profile (in the 
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troposphere), the turbidity factor decreases with height. Thus, by taking 

the turbidity factor for the layer above the required layer, Dave's code appears 

to include insufficient aerosol scattering. 

Thus, we see from Tables 2.2 and 2 . 3 ,  that whereas the results for ss 

and total radiance (Iss and IRT, respectively) obtained bv the two 

codes (i.e., ours and Dave's) for the molecular atmosphere agree to within 

1% to 2%, those for molecular plus aerosol atmosphere show a discrepancy. 

ever, for the latter case, the values if Im obtained by Dave's code turn 

out to be less than I values in ths forward direction, which is 

obviously incorrect; whereas I 

greater than the I 

How- 

ss 
values obtained by Our code are RT 

values for all angles, as they should be* ss 

(iii) Effects of Multiple Scattering 

We use our code to compute the SS andtotal radiance for different 

optical depths, solar zenith angles, aerosol characteristics and wave- 

lengths of incident solar radiation. A n  example of a typical input 

data is as follows. The aerosol size distribution (Refs. 1 and 3 7 )  

is a Modified Gamma Distribution (MGD) given by 

(28) 2 -br -1 
n(r) =ar e , 0.03 5 r 5 2.OUrn , b = 10.0 pm 

the particle refractive index m = 1.55; volume scattering (and extinc- 

tion) coefficients, (and Bext), are given by 6 = 6 = 1.116 x 
fisc ext sc 

an-' per particle; and A = 0 . 5 5 p m .  The results are given in 

0 Table 2.4, for solar zenith angles 30 , 45O, and 60°, and optical depth 

cornponents for Rayleigh (T ) and Mie (r ) particles, being ( 0.1, 

0.2) and (0.2, 0.2), respectively. 

R PS 
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Table  2 . 4 :  N o r m a l i z e d  d l m u c a n t a r  R a d i a n c e  V a l u e s  ? ss and IN RT and for d i f f e ren t  

(I!~-I&) N 
Angle Ang 1 e 1;s IRNT 

Azimuth Scattering 

A = 0.25 A = 0 A = 0.25  (Deg) (Deg) A =  0 

0 Solar Zenith Angle = 30 

't = 0.1 JPS = 0.2 R 

Normalization Constant = 1.0920 1.1406 1 J 5 7 4  
0 0 .o 1 .oooo 1 .oooo 1 .oooo 

4.5 
0 .o 

6 .O 
0 .o 

4 2; 0 0.9779 o m a 7  0 .9790 0.1 0.1 
, a  4 .O 0.9161 0.9191 0 , 9 2 0 2  0.3' 0 e 4  
12 6 .O 0.8257 o .a318 o .a342 0.7 1 .o 
16 8 .O 0.7211 0.7306 0.7344 1.3 1 .a 

TR = 0 . 2 ,  T p s =  0.2 

Normalization Constant = 1.0003 1.0652 1 . 0 9 z  6.5 9 .o 
0 0 .o 1 .oooo 1 .oooo 1 .oooo 0 .o 0 .,o 
4 2 .o 0.9785 0.9797 o .9ao2 0.1 0 .2  
a 4 .O o 3 1 8 3  0.9227 0 .9245  0 .5  0.7 

12 6 .O 0.8303 o .a393 o .a430 1.1 1.5 
16 8 .O o .72a4 0.7426 o .74a5 1.9 2.8 

Solar Zenith Angle 60' 

Normalization Constant = 1.4679 1.5860 1.6026 
0 0 .o 1 .oooo 1 .oooo 1 0000 

8.0 
0 .o 

9.2 
0.6 

4 . 3.5 0.9360 * 0.9399 0.940'5 0.4 0.5 
a 6.9  0 .7774 0.7908 0 .7930 1.7 2.0 

12 10.4 0.5932 0.6167 0.6207 4.0 4.6 
16 13.9 0.4347 o .465a 0.47 14 7.2 a .4 

T = 0 . 2  , Tps= 0 . 2  R 

Normalization Constant = 1.2357 I 3 8 3  1.3905 10.7 12.5 
0 0 .o 1 .oooo 1 .oooo 1 .oooo 0 .o 0 .o 
4 3 . 5  0.9377 0.9429 o .943a 0.6 0.7 
8 6.9 o .7a33 0.8012 o .a043 2.3 2.7 
12 I O  .4 0.6039 0.6343 0 .6414 5 .O 6.2 
16 13.9 0 .4494 0 .4920 0.5001 9.5 11.3 
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Azimuth Scattering N 
Ang 1 e Ang 1 e I!T ( lNRT-& ) 

(Deg) (Deg) A =  0 A = 0.25 A = O  A = 0.25 

Solar Zenith Angle = 45' 

'c = 0.l,Tps = 0.2 
R - 

Ncrmilization Constant = 1.2373 1.3062 1 e3231 5.6 6 -9 
0 0 .o 1 .oooo 1 .oooo 1 .oooo 0 .o 0.0 
4 2.8 0.9566 0.9585 0.9590 0.2 0 -3 
8 5.7 0 A424 0.8492 0.8511 0.8 1 .o 
12 8.5 0.6942 0.7071 0.7108 1.9 2 -4 
16 11 e3 0.5479 0.5663 0 -57 18 3.4 4.4 

TR = 0.2 , Tps= 0.2 

Normalization Constant = 1.1044 1.1911 1 .2155 7.9 10 .o 
0 0 .o 1 .oooo 1 .oooo 1 .oooo 0 .o 0 .o 
4 2.8 0.9577 0.9605 0 e96 13 0.3 0.4 
8 5.7 0.8466 0 A563 0 3592 1.1 1.5 
12 8.5 0 -7022 0.7207 0 -7263 2.6 3.4 
16 11.3 0.5597 0.5864 0 e5946 4.8 6.2 
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The r e s u l t s  presented i n  Table 2.4 have been arranged t o  i l l u s t r a t e  

two points: the MS contributions to the absolute m a g n i t u d e  of the 

almucantar radiance, and the MS contributions to the s h a p e  of the 

almucantar radiance curve. Thus the first row in each of the 6 

sections of the Table gives the actual radiance for zero degree azimuth 

angle (and hence, zero degree scattering angle). Note that the incident 

flux was taken as F = T T  for these computations. A l l  other rows in each 

section give the normalized radiances, Iss and IRT, where N N 

Finally, in the two right-hand columns, we give the percentage differ- 

ences (IRT - Iss)/Iss , which serves to indicate the deviation in the N N 

shape of the almucantar radiance curve due to MS. 

( iv )  Concluding Remarks 

From t h e  r e s u l t s  given in T a b l e  2 .4 ,  w e  see t h a t  M S  con t r ibu te s  

between 4.5% and 12.5% to the magnitude of the aureole radiance, with- 

in the range of parameters we have considered. Of more concern to the 

retrieval o f  the size distribution Erom almucantar radiances, however, 

is the MS contribution to the shape of the almucantar radiance curve. 

T a b l e  2.4 suggests  t h a t  provided w e  res t r ic t  ourse lves  t o  s c a t t e r i n g  angles  

of less than about 10 , t h e  e r r o r  i n  t h e  shape of t h e  curve i s  u n l i k e l y  

t o  exceed 3%. 

angles  i s  q u i t e  s t rong ly  dependent on s o l a r  z e n i t h  angle  4' 

0 

The azimuth range implied by t h i s  range of s c a t t e r i n g  

. sun 
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2.3.3 An Approximation t o  Mult iple  Sca t t e r ing  i n  t h e  E a r t h ' s  Atmosphere: 

Almucantar Radiance Formulation 

I n  o u r  r a d i a t i v e  t r a n s f e r  code (Sect ion 2 .3 .2) ,  based on the  Gauss- 

Se ide l  approach, t h e  p a r t i c u l a t e  phase func t ion  P i s  expanded as a Legendre 

series so t h a t  as many as 100 o r  more terms may be  involved compared t o  only  t h r e e  

for  t h e  molecular phase funct ion P 

t h e  computation costs can be  enormously increased.  

i n  an i terat ive inve r s ion  scheme, such as the  nonl inear  least  squares method, 

t h e  r e t r i e v a l  would become p r o h i b i t i v e l y  expensive; hence, the necess i ty  of  

making some s impl i fy ing  approximations t o  t h e  s o l u t i o n s  of  r a d i a t i v e  t r a n s f e r  

equation. Therefore ,  i n  order  t o  make t h e  inve r s ion  problem i n  ae roso l  remote 

sounding tractable, it becomes imperative t o  use  extremely f a s t  programs 

f o r  computing t h e  radiance f i e l d s  i n  which M S  i s  included. 

reason, that w e  developed our  MS approximation, descr ibed  i n  Refs. 27 and 28, 

t h e  f a s t  computation of t he  almucantar radiance f i e l d .  

P 

Thus with t h e  i n c l u s i o n  of  ae roso l s ,  M' 

I f  such a code w e r e  used 

It is f o r  t h i s  

I n  t h i s  s e c t i o n ,  a phenomenological de r iva t ion  of t h e  MS approximation 

formula (Ref. 27) f o r  t h e  t o t a l  almucantar radiance f i e l d ,  d i f f e r i n g  s l i g h t l y  

f r o m  the  expression i n  R e f .  28,  w i l l  be given. Formulas f o r  t h e  co r rec t ion  

f a c t o r s  which incorpora te  t h e  e f f e c t s  of MS and nonzero ground albedo A 

w i l l  a lso be  given. 

i n  d i r e c t  problems of  r a d i a t i v e  t r a n s f e r  a s soc ia t ed  with almucantar rad iance  

w i l l  b e  d iscussed  with examples. 

In  add i t ion ,  t he  u s e  and accuracy of  ou r  MS approximation 
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(i) Theoretical Considerations 

The s o l a r  aureole  theory and i t s  use  f o r  determining ae roso l  s i ze  

d i s t r i b u t i o n s  has a l s o  been d iscussed  i n  d e t a i l  by Deirmendjian i n  R e f s .  48 

through 41. I n  t h e  SS approximation, t h e  almucantar radiance i s  given by 

where H i s  t h e  t o t a l  

o p t i c a l  th ickness ;  is t h e  molecular o p t i c a l  th ickness  ( s u b s c r i p t s  M and P 

denote  molecules and p a r t i c l e s ,  r e s p e c t i v e l y ) ;  PM 

molecular phase func t ion  (sr 1;  J, i s  t h e  s c a t t e r i n g  angle  given by 

i s  t h e  inc iden t  f l u x ;  $s  is t h e  solar z e n i t h  angle;  T 
0 T 

M 
3 2 = -  1 6 ~  (1 + cos  $ 1  is  t h e  

-1 

* + s i n 2  0, cos w (31) cos $ = cos 
O S  

and w is t h e  azimuth angle  measured i n  a counterclockwise d i r e c t i o n  re la t ive 

t o  t h e  sun ver t ical ;  and F ($,A) i s  t h e  columnar p a r t i c u l a t e  s c a t t e r i n g  

-1 funct ion  (sr ) defined by 

PC 

1 r 

-2 -1 where N is  t h e  columnar s i z e  d i s t r i b u t i o n  ( c m  u m  ) ;  il and i are M i e  C 2 

i n t e n s i t y  c o e f f i c i e n t s ;  and r and r are l o w e r  and upper l i m i t s  of r a d i i .  1 2 

A s  i nd ica t ed  i n  Eq.  

t e r i n g  o p t i c a l  th ickness ,  T and a p a r t i c u l a t e  phase func t ion ,  P . 

(33a) ,  FpC is usua l ly  fac tored  i n t o  a p a r t i c u l a t e  scat- 

PSI P 
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In  Sec t ion  2.3.2 (Ref. 28 ) ,  w e  compared t h e  r e s u l t s  of E q .  (30) 

with those  obtained by our  r a d i a t i v e  t r a n s f e r  code, and showed t h a t  

although E q .  (30) provided a reasonable approximation under r e l a t i v e l y  c l e a r  

sky condi t ions ,  t h e  M S  cont r ibu t ions  t o  t he  s o l a r  au reo le  were o f t e n  non- 

n e g l i g i b l e  compared t o  the  SS cont r ibu t ions .  I n  a d d i t i o n ,  i t  w a s  shown 

t h a t  t h e  main M S  con t r ibu t ion  t o  almucantar radiance w a s  due t o  molecules 

alone; t h e  inc rease  of ae roso l  loading had a r e l a t i v e l y  s m a l l  e f f e c t  on M S  

con t r ibu t ions .  In  Ref. 26, it w a s  shown t h a t  s i z e  d i s t r i b u t i o n s  

r e t r i e v e d  i n  t h e  SS approximation from radiance d a t a  f o r  ‘1: = 0.1, showed 

r e l a t i v e l y  s m a l l  discrepancy from t r u e  values;  however, t hose  from TM = 0.2 

showed considerably l a r g e r  e r r o r ,  thereby suggest ing t h a t  t h e  M S  e f f e c t  due 

t o  ae roso l s  is d i s t i n c t l y  smaller  than t h a t  due t o  molecules. 

M 

In  ou r  M S  approximation, following Ref. 3 8 ,  it w a s  assumed 

t h a t  t h e  s o l a r  aureole  radiance w a s  e s s e n t i a l l y  due t o  SS by ae roso l s  and 

molecules, and M S  by molecules alone. The de r iva t ion  of expressions f o r  

t ak ing  i n t o  account t he  e f f e c t s  of M S  and ground albedo w i l l  be presented 

next .  

(ii) Factorization of the  Transfer Equation 

Our M S  approximation t o  the  equation of r a d i a t i v e  t r a n s f e r  i n  an aerosol -  

laden atmosphere follows the  suggest ion f i r s t  made by Sekera (Ref.42 ) and 

subsequently developed by Diermendjian (Refs. 38, 39, 411, who r e f e r r e d  t o  it a s  

a pe r tu rba t ion  approximation. (See a l s o  R e f .  40.) W e  s ta r t  wi th  

the  equat ion of  r a d i a t i v e  t r a n s f e r  i n  a p l ane -pa ra l l e l ,  v e r t i c a l l y  inhomogeneous 
.. 

atmosphere, which we may w r i t e  i n  the  form 
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and 

Equation (30)can be obtained from Eq.(33) by ignoring the integral on the 

right hand side, and setting p = po. 

Following Sekera (Ref. 42) and Diermendjian (Refs. 40, 41)  r we may rewrite 

Eq. (33a) in the following form 

P(T) = PM + f(--rl PD 

PD = Pp - PM where 

and f (TI = a,,/(a, + aps) 

f(T) is known as the turbidity coefficient, and U ( T )  is the single scattering 

albedo, both being functions of the altitude 

Similarly, we may separate the light field into two parts, viz., 

(3( L ( T r 6 )  = LM(Tr5) + LD(~,c) 
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where LM r ep resen t s  t h e  radiance f i e l d  produced by molecular s c a t t e r i n g  

a lone ,  and may be def ined as t h e  so lu t ion  t o  t h e  equat ion 

Note t h a t  t h i s  equat ion  is t o  be  solved f o r a  molecular atmosphere having an 

o p t i c a l  th ickness  equal  t o  the  t o t a l  o p t i c a l  th ickness  -rT of  t h e  a c t u a l  

molecular-plus-aerosol atmosphere, and n o t  'rM. 

I f  w e  now s u b s t i t u t e  Eq. (36) i n t o  Eq. (33) , and make use  of  Eqs .  ( 3 4 ) ,  (35) , 

and (37),we o b t a i n  t h e  following i n t e g r o d i f f e r e n t i a l  equat ion f o r  L,,, which 

r ep resen t s  t h e  depar ture  from, or  "per turba t ion"  t o  a pure ly  molecular rad iance  

f i e l d :  

(a) Approximate Solu t ion  t o  Eq. (38) 

Equat ion(38)  i s  c l e a r l y  more complex than t h e  o r i g i n a l  Eq. ( 3 3 ) .  

Sekera ( R e f .  

app ropr i a t e  f o r  s o l v i n g i t  (provided LM ( ~ ~ 5 )  is known throughout t he  atmosphere);  

42) suggested t h a t  t he  method of success ive  s c a t t e r i n g  may be most 

as y e t  w e  know of no at tempt  t o  pursue t h i s  idea .  

In  t h e  region of t he  s o l a r  aureole ,  Deirmendjian ( R e f .  38, 41 )  enPloYed 

a s i n g l e  scattering approach t o  the  so lu t ion  of Eq. 

t h e  i n t e g r a l  terms,  w e  may ob ta in  

(38 ) .  Thus, by neglec t ing  

2-49 



Along t h e  almucantar (p = ) t h i s  equat ion must be  replaced by 
0 

LD r ep resen t s  t h e  pe r tu rba t ion  to  the molecular radiance d i s t r i b u t i o n  

L which the inc lus ion  of ae roso l s  r equ i r e s .  

approximation t o  L 

theory.  

By adopting the SS 
i M  

our approximation corresponds to  f i r s t - o r d e r  p e r t u r b a t i o n  D‘ 

(b) Parametr izat ion of L 

I n  a pu re ly  molecular atmosphere, t h e r e  is no solar aureole ,  

due t o  t h e  nea r ly  i s o t r o p i c  na ture  of t h e  Rayleigh phase funct ion.  

As a r e s u l t ,  f o r  v i s i b l e  o r  u l t r a v i o l e t  wavelengths, w e  cannot expect  the 

s i n g l e  s c a t t e r i n g  approximation t o  Eq.(37) t o  prove p a r t i c u l a r l y  accura te .  

( I n  f a c t ,  i f  t h e  s i n g l e  s c a t t e r i n g  approximation t o  Eq. (37) is combined 

with Eq.  (39), t h e  r e s u l t  would be E q .  (30), and nothing a t  a l l  would have 

been gained. ) 

Ins t ead ,  w e  followed a suggest ion of McPeters.and Green (Ref. 4 ) .  

A s  is  f a i r l y  w e l l  known (see f o r  example, R e f .  (351, t h e  na tu re  

of t h e  Rayleigh Phase funct ion d i c t a t e s  that  LM must be  express ib le  i n  the  

following form 

+ d2’ (T,U,Uo) cos 2w M 
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(0) 
M A complete paramet r iza t ion  of L would r equ i r e  empir ica l  formulae f o r  L M 

I 

and A2’  --three func t ions ,  each of 3 v a r i a b l e s .  Such a paramet r iza t ion  
LM M 

is beyond t h e  scope of t h i s  paper. I n  t h i s  paper, w e  r e s t r i c t  our formulat ion 

and computations mainly t o  the  almucantar, def ined by p = 1.1 . This reduces 

t h e  t h r e e  func t ions  ii) From a s tudy of  

t h e  t abu la t ed  r e s u l t s  of Ref. 35 and 4 ,  it w a s  noted 

0 

t o  func t ions  of only 2 va r i ab le s .  
M 

t h a t ,  f o r  a wide range of circumstances,  LM followed t h e  angular  p a t t e r n  

p red ic t ed  by the s i n g l e  s c a t t e r i n g  approximation, except  t h a t  it had been 

sca l ed  up somewhat- Our own examination of Ref. 35 r e s u l t s  

confirm t h i s  i d e a ,  provided$s is not  greater than 70 . 
w r i t e  our paramet r iza t ion  of L along the almucantar as fol lows 

0 Thus we  chose to 

M 

where 
- 

PS = U T  = T  + T  TSS T M 

is t h e  t o t a l  s c a t t e r i n g  o p t i c a l  th ickness ,  and T ~ ~ ,  an ad jus t ab le  parameter 

dependent on T~~ and po, is  t h e  co r rec t ion  term due t o  mul t ip le  s c a t t e r i n g .  

Note t h a t  Eq. (41 )  implies  a d e f i n i t e  r e l a t i o n s h i p  between the  th ree  

( i )  func t ions ,  a r e l a t ionsh ip  which may not  always be exac t ly  s a t i s f i e d .  LM 

However, i n  t h e  region of the s o l a r  aureole ,  cosw = 1 = cas 2w, SO t h a t  

small dev ia t ions  from t h i s  r e l a t i o n s h i p  should have a minimal e f f e c t  on  

the accuracy of  Eq. (41). 

S u b s t i t u t i n g  Eqs. (3%) and (41) i n  Eq. (36) ane ob ta ins  

P + T  P I  
‘tMS M PS P 
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where 

= T +T 
‘MS M M S  (43b) 

i s  t h e  e f f e c t i v e  molecular s c a t t e r i n g  o p t i c a l  thickness .  

Equation (43) i s ,  of course,  formally i d e n t i c a l  t o  E q -  (30) d i f f e r i n g  

from it only i n  t h e  moun t  of molecular s c a t t e r i n g  it provides .  

such an equat ion could have been pos tu l a t ed  d i r e c t l y  from Eq.(30) , w e  b e l i e v e  

Although 

t h a t  t he  s t e p s  ou t l ined  i n  t h i s  s ec t ion  provide considerable  i n s i g h t  i n t o  the 

na ture  of t h e  co r rec t ion  term, T and a l s o  suggests  a procedure f o r  ca l cu la t in !  

t h i s  f a c t o r .  I n  t h e  nex t  s ec t ion ,  w e  d i scuss  this procedure,  as w e l l  as t h e  

MS 

empir ica l  formula which we  have se lec ted .  

(iii) F o r m u l a t i o n  of Correction Factors f o r  MS and  Ground A l b e d o  Effects 

The most obvious way t o  ob ta in  ‘Ia would be  t o  so lve  Eq.(37) each t i m e  as 

w e  r equ i r e  it; t h i s ,  however, is  cont ra ry  t o  o u r  d e s i r e  f o r  s i m p l i c i t y .  I n  

paper  A ,  w e  d i d  so lve  E q .  (37 )  though w e  a l s o  expressed the opinion t h a t  it 

would be p r e f e r a b l e  t o  have some empir ica l  formula f o r  f u r t h e r  use.  W e  have 

s i n c e  developed such a formula, which is  discussed i n  t h i s  s ec t ion .  

Since w e  can assume t h a t  almucantar radiance L has t h e  same w dependence M 
ss 
M I  0 

as  obtained by t h e  SS approximation L and t h a t  TMS is a func t ion  of l~ and 

0 0 3 
= 0 

M S  8K 
 we may def ine  T by s e t t i n g  and PM(O ) = - i n  Eq.  (41) 

T sec  8 
0 T 0 a w  3 H ~ -  T~~ e 

uO 
r = L  ( w = O )  M s  M 

a s  : 

(44)  

Here L and hence T has no ground albedo dependence ( i . e . ,  A = 0 ) .  M M S  

I n  o rder  t o  ob ta in  an empir ica l  forEula f o r  T we f i r s t  produced a 
M s ’  

d a t a  base from t h e  t a b l e s  of Ref.35 f o r  o p t i c a l  th icknesses  

of 0.02, 0.05, 0.1,  0.15, 0.25 and 0.5,  and zeni th  cas ines  0.4,  0.92 and 1.0. 

To fill i n  some of the  gaps, w e  supplemented these  da t a  wi th  some f u r t h e r  

values generated by our  own r a d i a t i v e  t r a n s f e r  code. This da t a  was a l l  

r e s t r i c t e d  t o  a conservat ive atmosphere, f o r  which = 1, i . e . ,  T = T T M + TpS’ 
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The f i n a l  parameterized expression f o r  T is  r e s t r i c t e d  t o  th ree  ad jus t ab le  

parameters,  which w e r e  then i t e r a t e d  t o  ob ta in  the b e s t  f i t  t o  the  da t a  base 

by using a non-linear least  squares code, t o  g ive  t h e  r e l a t i o n  

MS 

2 1/4 
T = 0.02 TSS + 1 . 2  TSS/Po 

M s  
(45) 

Thi s i o n  is, i n  genera l ,  accu ra t e  t o  wi th in  1%, f o r  o p t i c a l  th icknesses  

0 
up t o  0.6 and z e n i t h  angles  up t o  70 . 
i ts  r e s u l t s ,  when i n s e r t e d  i n t o  Eq. ( 4 1 ) ,  wi th  t h e  tables of Dave and 

Furukawa ( R e f .  3 4 ) ,  which inc lude  ozone absorpt ion.  This  comparison is shown i n  

T a b l e  2.5, where w e  see t h a t  t h e  b igges t  error is  only 1.2%. 

Eq. (411, a long wi th  the  empir ical  r e l a t i o n  Eq. ( 4 5 ) ,  provides  a highly accu ra t e  

approximation t o  t h e  almucantar radiance,  a t  l eas t  i n  t h e  aureole  region,  f o r  

both conserva t ive  and non-conservative atmospheres. 

A s  a t e s t  o f  Eq. (45 ) ,  w e  have compared 

I 

Thus w e  see t h a t  

Un t i l  now, our  d iscuss ion  has ignored t h e  con t r ibu t ion  from ground reflec- 

t i v i t y  o r  a lbedo,  a def ic iency  we now proceed t o  r e c t i f y .  A s  is w e l l  known 

(e.9.  , Refs. 43, 44, and 35) , t h e  radiance L ( A )  i n  t h e  presence of a ground 

albedo, A > 0, may be r e l a t e d  t o  t h e  zero  ground albedo radiance 

L ( A  = 0 ) ,  and t o  c e r t a i n  a u x i l i a r y  func t ions ,  a s  

where G ( T  ,p ) is the  t ransmission func t ion  of t h e  atmosphere T o  

F(TT,Ll) is  the  r e f l e c t i o n  f u n c t i o n o f  t h e  atmosphere f o r  d i f f u s e  

Source a t  the ground 
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TABLE 2.5 : Comparison of R a d i a n c e  V a l u e s  f r o m  a D u s t  Free A t m o s p h e r e  at a 
S c a t t e r i n g  A n g l e  of 00. 

0 Dave & Furukawa Our MS 0 T A 
O3 (deg) R e s u l t s  Approximation (urn) TM 

-~ ~ 

0.6550 0.04823 0 -02016 0 0.01824 

30 0.02089 

60 0.03448 

0.6150 0.06224 0.03834 

0.5750 0.08179 0.04048 

0.5350 0.1098 0.0240 

0.4950 0.1508 0.007143 

0 0.02316 

30 0.02640 

60  0.04249 

0 0.03048 

30 0.03465 

60 0 -05489 

0 0.04177 

30 0.04745 

60 0.07474 

0.01821 

0.02084 

0.03435 

0.02311 

0 -02634 

0.04232 

0.03035 

0.03449 

0 -05460 

0.04147 

0 -04711  

0.07412 

0 0.05853 0.05799 

30 0.06636 0.06570 

0.10187 60 0.10300 

0. 3600 0.5634 0.004161 0 0.2014 0.2032 

30  0.2174 0.2180 

60 0.2507 0.2477 
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Here, we assume the Lambertian law of reflection, so that the contri- 

bution from ground-reflected photons is azimuth-independent, in contrast to 

all other photons, which are assumed to follow the azimuth dependence of the 

Rayleigh phase function. Therefore, for a Lambertian surface, one must add 

an azimuth-independent term to E q s .  (41) and (43) , such that 

QT, + T 1 P + T P + T~ pM(o0)J (43') 
L = (Ho/Po) e - T T / p O  . and 

MS M PS P 

where Eq. (44) and (46) suggest that T~ is 

and 

given as 

Again we have produced a sizeable data base, drawn from the tables of 

Ref. 35 and the results of our own code. By obtaining best least squares fits 

to the data base, the final ex9ressions (with 3 adjustable Farmeters) for T2 

and T~ are 
(504 

2 
= 1.34kS uo (1.0 + 0.22 (Tss/p0) ) T2 

and = 0.9 T ~ ~ -  0 . 9 2 ~ ~  + 0.54 T 3 
T3 ss ss 
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Note that we often use the symbol T to denote T as given by Eq. ( 4 4 ) ,  1 MS 

so that 

Let us now return to Eq. ( 4 3 ' ) ,  which we have built up in stages, and 

explain its implementation. In general, an atmosphere, or atmospheric model, 

will have at least 4 components to its optical thickness: TM, the molecular 

TPS ' , the ozone absorption Component; 
'0 2 

(Rayleigh) scattering component; 
2 

the particulate scattering component; and T the particulate absorption 

component. From r cosine of the solar zenith angle, 1.1 and ground albedo, 

A (if non-zero) , we may calculate both T and T using Eqs .  (441,  (48)  I and 

(50 ) .  The final evaluation of Eq. ( 4 3 ' )  is then straight-forward for any 

PA' 

ss ' 0' 

MS A '  

azimuth angle, or scattering angle (cf Eq. 31). 

( i v )  C o m p u t a t i o n  of A l m u c a n t a r  Rad iances  

Rather than generate several new sets of data with our radiative transfer 

code (a rather expensive exercise), we have decided to utilize the data from 

existing runs, as this appears to give good coverage of the "parameter space" 

we wish to investigate. 

models can be divided into the following two data groups. 

The existing data obtained with two size distribution 

The first data group, hereafter referred to as Data Group A ,  corresponds 

to a modified gamma-type aerosol size distribution, such as Deirmendjian's 

(Ref. 40) Haze H model: 

2 -br n(r) = a r e (51) 
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-1 W e  chose b = 10 pm , a r e f r a c t i v e  index of  m = 1.55 - i (O.01,  and a wave- 

length  of A = 0.55 pm. The parameter a, which is  r e l a t e d  t o  t h e  t o t a l  number 

of p a r t i c l e s ,  w a s  determined by t h e  value used f o r  r The e x i s t i n g  d a t a  

base generated by t h e  use of our  r a d i a t i v e  t r a n s f e r  code cons is ted  of twenty- 

four d a t a  sets, each containing twenty radiance values  f o r  t h e  azimuthal angles  

4 = 0 (1 1 19O, and obtained by using a l l  p o s s i b l e  combinations of  t he  fol lowing 

values  of t h e  parameters 8 o, rM, -rp and A: 

P' 

0 0  

0 8 = 30 , 4S0, 60° 
0 

TM = 0.1, 0.2 

Tp = 0.1, 0.2 

A = 0.0, 0.25 I 

The second da ta  group, h e r e a f t e r  r e f e r r e d  t o  as D a t a  Group B ,  corresponds 

t o  a log-normal ae roso l  s i z e  d i s t r i b u t i o n ,  namely, 

We chose rm = 0.25 pm, U = 1 .0 ,  and used t h e  same value of  r e f r a c t i v e  index 

as i n  t h e  f i r s t  group, namely, m = 1.55 - i ( O . 0 ) .  Here N i s  d i r e c t l y  r e l a t e d  

t o  Tp. 

subdivided i n t o  two subgroups, h e r e a f t e r  r e f e r r e d  t o  a s  Data Groups B1 and 

B2, corresponding t o  Model Atmospheres B1 and B2 defined i n  Table 2 .6  by 

va lues  o f  rM and r0 

0 

D a t a  Group B ,  i n  c o n t r a s t  t o  Group A ,  conta ins  da t a  t h a t  could be  

a t  wavelengths of 0 .4 ,  0.5,  and 0.6 urn. 
3 
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TABLE 2.6: O p t i c a l  T h i c k n e s s  V a l u e s  for  Model  A t m o s p h e r e s  B1 and B2 C o r r e s p o n d  
t o  a Log Normal Aerosol S i z e  D i s t r i b u t i o n .  

Model Atmosphere B 1  Model AtmsphereB2 

r 
TP 03 rP T 

03 

0.4 0.364 0.13984 0.0 0.18015 0.0 

0.5 0.145 0.14400 0.01350 0.18480 0.01357 

0.6 0.069 0.14778 0.05013 0.18910 0.04774 

The D a t a  Group B 1  f o r  Model Atmosphere B 1  is  based on eo = 45O, ‘r P = 0.14, and 

A = 0.0 and 0 .2 ;  and Data Group B2 f o r  Model Atmosphere B2 is based on 8 0 = 30°, 

Tp 

parameters f o r  t h e  Model Atmospheres B1 and B 2  a r e  given i n  T a b l e  2 . 2 .  I n  a l l ,  

w e  have a t o t a l  of e ighteen d a t a  sets: s i x  f o r  D a t a  Group B 1  and twelve f o r  

Data Group B2. 

Thus, a l t o g e t h e r  t he  r a d i a t i v e  t r a n s f e r  d a t a  base ,  composed of two d a t a  

groups A and B,  conta in  42 d a t a  sets, each containing 20 da ta  po in t s ,  generated 

by our r a d i a t i v e  t r a n s f e r  code. 

the accuracy of  o the r  approximations t o  t h e  r a d i a t i v e  t r a n s f e r  equation must 

b e  made. For this purpose, 42 da t a  s e t s  w e r e  obtained by using Eq. ( 1 4 ’ )  f o r  

our M S  approximation, and 2 1  da t a  s e t s ,  by using Eq. 

t i o n  (which is  independent of A ) ;  wi th  a l l  r e l evan t  parameters being the  same 

a s  t h e  ones used t o  generate  t h e  r a d i a t i v e  t r a n s f e r  data .  

0.18, and A = 0.0, 0.2, 0 .4 ,  and 0.6. The exac t  values  of a l l  r e l evan t  

I t  i s  aga ins t  t h i s  da t a  base ,  t h a t  checks on 

(1) f o r  t h e  SS approxima- 
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I n  o rde r  t o  b r i n g  out  the  s a l i e n t  f e a t u r e s ,  i n s t ead  of  present ing  the  

f u l l  da t a ,  w e  decided t o  p r e s e n t  some jud ic ious ly  s e l e c t e d  da ta  using a 

combination o f  tables and graphs.  I n  Tables 2.7 and 2.8, d a t a  from Data Groups 

A and B, r e s p e c t i v e l y ,  i s  presented f o r  a l l  t h e  s e t s ,  bu t  f o r  only f i v e  of  

t he  twenty azimuth angles .  I n  F igs .  2.14 and 2.15, we have p l o t t e d  seve ra l  s e l e c t e d  

d a t a  sets i n  full. 

I n  Table 2.7,  t h e  computed radiance values  f o r  Data Group A a r e  presented 

i n  f i v e  columns: t h e  SS r e s u l t s  are placed i n  t h e  middle, f lanked on either 

s i d e  by the t r u e  r e s u l t s  from our  r a d i a t i v e  t r a n s f e r  code f o r  t h e  t w o  values  

of ground albedo,  with our  M S  approximation r e s u l t s  on t h e  ou t s ide  of these. 

Between each pair of ad jacent  columns is  a column g iv ing  t h e  percentage errors 

involved when one o f  t he  approximations (SS or  M S )  is compared wi th  the  t r u e  

r a d i a t i v e  t r a n s f e r  values.  

columns g iv ine  t h e  values  of t h e  parameters 8 , T 

computations w e r e  made. 

To t h e  l e f t  of t hese  colunms a r e  f i v e  o t h e r  

o M '  PI 
T 4 ,  and$ f o r  which t h e  

Note t h a t  @ = 7~ was used f o r  a l l  computations. 
0 

T a b l e  2.8 p re sen t s  s i m i l a r  data f o r  D a t a  Group B ,  which f o r  convenience, 

has been divided i n t o  three pa r t s :  

Atmosphere B 1  and A = 0.0 and 0.2; Table 2.8b, r e s u l t s  f o r  Model Atmosphere B 2  

and A = 0.0 and 0.2; and Table 2.8c,  r e s u l t s  f o r  Model Atmosphere B2 and A = 0.4 

and 0.6. 

Table 2.8a gives  the  r e s u l t s  for Model 

wo p o i n t s  should be made regarding the  e r r o r  considerat ions.  

t he  percentage e r r o r  was obtained by d iv id ing  t h e  l a r g e r  by the  smaller of 

t h e  pair  of numbers, s u b t r a c t i n g  un i ty ,  and mul t ip ly ing  by 100, so t h a t  the 

d i f f e rence  is  always a p o s i t i v e  number. The second po in t  concerns the  

accuracy of t h e  r a d i a t i v e  t r a n s f e r  code r e s u l t s .  Like a l l  such programs, 
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TABLE 2 .7:  Data Group A C o n t a i n i n g  R a d i a t i v e  T r a n s f e r ,  S S ,  and Our MS A p p r o x i m t i o  
R a d i a n c e s  f o r  the  M o d i f i e d  Gamma D i s t r i b u t i o n ,  rM = 0.1 and 0 . 2 ,  

T p  = 0.1 and 0 . 2 ,  qs = 30°, 45O and 600, and A = 0.0 and 0 .25 .  

A - 0.0 A - 0.25  

0Ur)ct 8 Padiativo 8 ss 8 R . b C A U V O  \ O u r s  0 
$ s  7" T~ (deg) (a*) ~ppmx.. mror zxuvfsr  mTmr ~ppmx. Error  T'rm8fer m r  ~ p p r ~ ~ .  

3Oo 0.1 0.1 0 0.0 0.6480 0.23  0.6495 3.10 0.6300 5.32 0.6635 0.77 0.6686 
5 2.5 0.6270 0.24 0.6285 3.19 0-6CJ91 5.48 0.6425 0 .79  0.6476 

10 5 .0  0.5704 0.23 0.5717 3.48 0.5525 6.01 0.5857 0 .W 0.5909 
15  7 .5  0.4932 0.18 0.4941 3.96 0 .4753 6.90 0.5081 1.08 0.5136 
19 9 .5  0.4277 0.19 0.4285 4.51 0.4099 7 .90  0.4424 1.27 0.4480 

0 . 1  0 .2  0 0.0 1.1280 1 - 1 2  1.1406 4.45 1-0920 5.99 1.1574 0 .09  1.1564 
5 2.5 1.0908 1 .13  1.1031 4.59 1-0547 6.17 1.1198 0.07 1.1190 

10 5.0 0.9899 1.16 1.0015 4.98 0.9540 6.73 1.0182 0.01 1.018l 
15 7 .5  0.8524 1 .22  0.8628 5.66 0.8166 7.71 0.8796 0.09 0.8804 
19 9 .5  0.7358 1 .26  0.7451 6 .41  0.7002 8.80 0.7618 0.25 0.7631 

0 .2  0.1 0 0.0 0.6280 0.05 0.6277 6.03 0.5920 9.92 0.6507 0.86 0.6563 
5 2 .5  0.6093 0.07  0.6089 6 - 2 1  0.5733 10.22 0.6319 0.30 0.6376 

10 5.0 0.5587 0.09 0.5582 6.77 0.5228 l l . 1 7  0.5812 0.98 0.5863 
15 7 .5  0.4896 0.14 0.4889 7 .71  0.4539 12.78 0.5119 1 .13  0.5171 
19 9 . 5  0.4310 0.23 0.4300 8.75 0.3954 14.57 0.4530 1 .32  0.4591 

0 .2  0.2 0 0.0 1.0574 0.74 1.0652 6.49 1.0003 9 .01  1.0904 0 .15  1.092C 
5 2.5 1.0241 0.74 1.0317 6.68 0.9671 9.29 1.0569 0.17 1.0587 

10  5.0  0.9341 0.75 0.9411 7.20 0.8772 10.16 0.9663 0.24 0.9684 
1s 7 .5  0.8113 0.74 0.8173 8.29 0.7547 11.63 0.8425 0.38 0.845; 
19 9 . 5  0.7072 0 .72  0.7123 9.45 0.6508 13.32 0.7375 0 .53  0.7414 

45O 0.1 0.1 0 0.0 0.7546 0.73 0.7601 3.75 0.7326 5.66 0.7741 0.03 0.774: 
5 3.5  0.7071 0.75 0.7124 3.98 0.6851 6.03 0.7264 0.04 0.726' 

10 7 . 1  0.5904 0 .81  0.5952 4 .68  0.5686 7 -14  0.6092 0 .13  0 . 6 1 M  
15  10.6 0.4566 0.88 0.4606 5.89 0.4350 9.10 0.4746 0.29 0 . 4 7 a  
19  13 .4  0.3635 0.88  0.3667 7 .22  0.3420 11.32 0.3807 0.50 0.3821 

0 .1  0 .2  0 0.0 1.2802 2.03 1.3062 5.57 1.2373 6.93 1.3231 1 .26  1.306' 
5 3.5 1.1978 2.11 1.2231 5 -90  1 .1550 7.36 1.2400 1 .28  1.224 

10 7 . 1  0.9954 2.33 1.0186 6 .91  0.9528 8 .69  1.0356 1 .36  1.021' 
15  10 .6  0.7634 2.66 0.7837 8 .67  0.7212 11-01  0.8006 1 .41  0.789' 
19 13 .4  0.6019 2.92 0.6195 10 .61  0.5601 13 .62  0.6364 1 - 3 9  0.627 

0 .2  0 . 1  0 0.0 0.7137 0.55 0.7176 6 .99  0.6707 10.29 0.7397 0.07 0.740 
5 3 .5  0.6724 0 .55  0.6761 7 .40  0 .6295 10.91 0.6982 0.09 0.698 

10 7 . 1  0.5707 0 . 5 8  0.5740 8 .69  0.5281 12.90 0.5962 0 .13  0.5971 
15 10.6 0.4541 0.57 0.4567 10 .90  0.4118 16.29 0.4789 0.25 0.480 
19 13.4 0.3726 0.56 0.3747 13 .31  0.3307 19.99 0.3968 0 .30  0 . 3 9 8  

0 .2  0 . 2  0 0 .0  1.1706 1 .75  1.1911 7 .85  1.1044 10 .06  1.2155 1 .08  1 .202  
5 3 .5  1.0990 1 .81  1 .1189 8.34 1 .0328 10.70 1.1433 1-11 1 .130  

10  7 . 1  0.9229 1.97 0.9411 9 .80  0 .8571 12.65 0.9655 1 .14  0.954 
15 10 .6  0.7210 2.18 0.7367 12 .35  0.6557 16.07 0.7611 1.17 0.752 
19 13 .4  0.5802 2 .33  0.5937 15.15 0.5156 19 .88  0.6181 1 -13  0.611 

60° 0.1 0 . 1  0 0.0 0.9517 1-82  0.9690 5.15 0.9215 6 .63  0.9826 1 .36  0 .969  
5 4.3 0.8643 1.93 0.8810 5 .61  0.8342 7.25 0.8947 1 .44  0 .882  

10 8 . 7  0.6683 2.27 0.6835 7.06  0.6384 9 .21  0.6972 1 .65  0 .685  
15 1 3 . 0  0.4757 2.77 0.4889 9.55 0 .4463 12.61 0.5026 1.95 0 .493  
19 16 .5  0.3612 3.18 0.3727 12.19 0 .3322 16.32 0.3864 2.14 0.378 

0 . 1  0 . 2  0 0.0 1.5233 4.12 1.5860 8.05 1.4679 9.18 1.6026 3.64 1 .546  
5 4 . 3  1.3804 4.40 1.4411 8 .76  1.3250 10.02 1.4577 3.88 1 .403  

10 8 .7  1.0597 5.23 1.1151 10 .98  1.0048 12.64 1.1318 4 . 5 6  1 .082  
15 13 .0  0.1449 6.47 0.7931 14.83 0.6907 17.23 0.8097 5.53 0.761 
19 16 .5  0.5579 7.55 0.5999 18.93 0.5045 22.22 0.6166 6.31 0 .580  

0 . 2  0 . 1  0 0 .0  0.8513 1.74 0.8661 8 .83  0.7958 11-37 0.8863 1.37 0.874 
5 4 . 3  0.7795 1-85 0.7939 9 -62  0.7242 12.50 0.8147 1-52  0.802 

10 8 . 7  0.6184 2.13 0.6316 12.09 0.5635 15.67 0.6518 1.65 0.641 
15 13.0 0.4598 2.52 0.4714 16.22 0.4056 21.20 0.4916 1 .95  0.481 

19 16.5 0.3650 2.85 0.3754 20.51 0.3115 27.00 0.3956 2.20 0.387 

0 . 2  0 . 2  0 0.0 1.3164 3.94 1.3683 10 .73  1.2357 12.53 1.3905 3.53 1 -34]  
5 4 . 3  1.1991 4.20 1.2495 11.70 1.1186 13.69 1.2717 3.74 1-225 

15 13.0 0.6773 5.96 0.7177 19.94 0.5984 23.66 0.7399 5.20 0.703 
19 16.5 0.5232 6.82 0.5589 25.45 0.4455 30.44 0.5811 5.87 0.548 

10 8.7 0.9360 4.94 0.9822 14.73 0.8561 17.32 1.0044 4.35 0.961 
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our code is  numerical, and, thus ,  can never be  exact. Consequently, w e  are 

not  able t o  guarantee our  r a d i a t i v e  t r a n s f e r  r e s u l t s  t o  b e t t e r  than about 1% 

although w e  be l i eve  that they are more accura te  than  t h i s .  Since ve ry  f e w  

publ ished r e s u l t s  e x i s t ,  it is v i r t u a l l y  impossible to  compare our r e s u l t s  

with r e s u l t s  of known accuracy. 

I n  o r d e r  t o  i l l u s t r a t e  t hese  r e s u l t s ,  w e  have s e l e c t e d  a few d a t a  sets 

f o r  g raph ica l  presenta t ion .  

both t h e  "best"  and " w o r s t "  cases f o r  comparison. But, i n  a g r e a t  

Or ig ina l ly ,  it had been our  i n t e n t i o n  t o  show 

many cases, it was near ly  impossible t o  d i s t i n g u i s h  t h e  var ious c m e s ,  

e s p e c i a l l y  i n  t h e  case of  D a t a  Group B. Thus, t h e  graphs presented i n  F igs .  2.14 

and 2.15 are, e s s e n t i a l l y ,  " w o r s t "  cases ,  which, w e  f e e l ,  adequately i l l u s t r a t e  

t h e  re la t ive accuracy of  the SS and M S  approximations. 

0 I n  Fig.  2.14, w e  p l o t  t h e  four  d a t a  s e t s  f o r  @ s  = 60 , which i l l u s t r a t e  

t he  e f f e c t  of varying T and T I n  Fig. 2.15, w e  p l o t  t h e  r e s u l t s  f o r  Model 

Atmosphere B2, and = 0.5 prn. Clear ly ,  it was no t  poss ib l e  t o  p l o t  a l l  t h e  
M P 

d a t a ,  so w e  have p l o t t e d  the  t h r e e  curves f o r  A = 0.0 ( t o  ind ica t e  t h e  r e l a t i v e  

accuracy o f  MS and SS approximations),  and t h e  r a d i a t i v e  t r a n s f e r  r e s u l t s  

f o r  A = 0.6 ( t o  i n d i c a t e  t h e  e f f e c t  of ground a lbedo) .  The loca t ion  of  t h e  

missing l i n e s  may be i n f e r r e d  from Table 2.8. 

So f a r ,  w e  have only considered r e s u l t s  obtained using the  one r e f r a c t i v e  

index, m = 1.55. 

index has l i t t l e  e f f e c t  on t h e  d i f f e rences  i n  s c a t t e r e d  radiances (obtained by 

I t  i s  genera l ly  accepted t h a t  t h e  r e a l  p a r t  of t he  r e f r a c t i v e  

M S  and SS approximation and RT ca l cu la t ions )  i n  t h e  aureole  region where 

d i f f r a c t i o n  s c a t t e r i n g  predominates. We wanted t o  know how our M S  approxima- 

t i o n  was e f f e c t e d  by t h e  inc lus ion  of ae roso l  absorp t ion .  In  order  t o  s tudy 

its e f f e c t s ,  w e  have repeated t h e  c a l c u l a t i o n s  f o r  Haze H (Eq. (51 ) )  w i t h  

T = T = 0 . 2 ,  bu t  using a r e f r a c t i v e  index of m = 1.55 - i 0.02. (Note t h a t  P M 
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= 0.16718, and T = 0.03282.) We PA now has two components, namely, rps T 

have also extended these calculations to include some higher azimuth angles. 

P 

These results are presented in Table 2.9. 

(v) Discussion of Results 

The most significant parameters to be considered in this analysis are 

probably TM and T closely followed by.$ A, and the shape of the aerosol 
P' I S I  

phase function Pp($)  at small angles JI. 

index and ozone absorption are most certainly small for the visible wavelength 

The effects of aerosol refractive 

region. Even if we restrict our considerations to the aforementioned five 

parameters, a complete study of all the possible combinations would be exceed- 

ingly costly, and is well beyond the scope of this investigation. Nevertheless, 

the data which we have shown here will be sufficient to draw several important 

conclusions concerning the accuracy and utility of our MS approximation. 

We will start our investigation with a study of the first group of data 

sets, which will permit an analysis of the effects of four of the five principal 

parameters (8 o f  T~~ TM, A). 

approximation is highly accurate, and provides a significant improvement over 

Table 2.7 shows that, for T~ = T = 0.1, our MS 
P 

SS, for both values of A and all three values of @ . The SS and MS approxima- 

tion results both decline in accuracy as 4 increases; for which there are 

two reasons. 

amount of higher-order scattering. Secondly, as $s increases, so does the 

scattering angle corresponding to a given azimuth angle. In the region of 

the aureole, Eq. (2) may be approximated by 

S 

S 

Firstly, as GS increases, so does the air mass, and with it the 

$ = $ sin $ (54 )  
S 

Thus, as $s increases, the data presented in Table 2 . 7  are seen to extend to 

larger values of 9 ,  where the dominance of the single scattering contribution 

is decreased. 
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When T~ i s  increased  from 0 . 1  t o  0 .2 ,  a d e t e r i o r a t i o n  of both the  MS 

and SS approximation r e s u l t s  is not iced.  This i s  hard ly  s u r p r i s i n g ,  as both 

of t hese  approximations ignore a l l  MS events  involving ae roso l s ,  which w i l l  

increase  s i g n i f i c a n t l y  when T i s  doubled. By c o n t r a s t ,  when T i s  increased  

from 0 .1  t o  0 .2 ,  w e  n o t i c e  t h a t ,  while t h e  SS r e s u l t s  cont inue  t o  d e t e r i o r a t e ,  

the  MS r e s u l t s  gene ra l ly  improve i n  accuracy, f o r  a l l  va lues  of A and $ . 
Again, t h i s  r e s u l t  i s  hard ly  su rp r i s ing ,  as the  MS approximation i s  designed 

s p e c i f i c a l l y  t o  t a k e  account of the  mul t ip ly-sca t te red  molecular con t r ibu t ion .  

Thus, i n  summary, from Table 2 .7 ,  one can see t h a t  the MS approximation is  

and and t h a t  this accuracy tends  

P M 

S 

p' 'MI 
q u i t e  accu ra t e  f o r  s m a l l  values  of T 

t o  reduce somewhat as e i t h e r  T However, i n  c o n t r a s t  t o  

the  SS approximation, t he  accuracy of  t he  MS approximation tends to  inc rease  

when TM is increased ,  thereby leading t o  the  conclusion t h a t  t he  MS approximation 

improves i n  accuracy as t h e  r a t i o  T /T is  increased.  

o r  QS i s  increased.  
P 

M P  

Next, with the  he lp  of Group B da t a  presented i n  Table 2 . 8 ,  we may d i scuss  

the  e f f e c t s  of t h e  ae roso l  phase func t ion - - f i r s t l y  because the  phase func t ion  

f o r  Group B i s  q u i t e  d i f f e r e n t  from t h a t  f o r  Group A, and secondly because 

v a r i a t i o n  of wavelength, A, implies a v a r i a t i o n  of e f f e c t i v e  par t ic le  s i z e ,  

which, i n  t u r n ,  a f f e c t s  t h e  phase func t ion .  

In  o rde r  t o  understand the  wavelength dependence of  t h e  M S  approximation, 

w e  s tudy  Tables 2.8a, 2.8b, and 2.8c-A.s A i nc reases ,  the r a t i o  of molecular t o  

p a r t i c u l a t e  s c a t t e r i n g  decreases  by a f a c t o r  of f i v e ,  thereby decreasing t h e  

accuracy of  t he  MS approximation, and increas ing  t h a t  of  t h e  SS approximation. 

This  is  due t o  the  systematic  reduct ion  i n  the  t o t a l  MS con t r ibu t ion .  Nevertheless ,  

even for  A = 0.6 Pm, our  MS approximation is  genera l ly  t w i c e  a s  accura te  as the  SS 

approximation, while f o r  A = 0.4 p m ,  the  former is  f a r  more accura te  than the  l a t t e r .  
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When we compare t h e  r e s u l t s  i n  Tables 2.8a and 2.8b f o r  the  two Model Atmospk 

B1 and B2 ,  we see  t h a t  t h e  MS approximation e r r o r s  are q u i t e  s i m i l a r .  This is  not 

r e a l l y  su rp r i s ing ,  a s  t h e  f a c t o r  T sec  @ a good i n d i c a t o r  of the  amount of 

p a r t i c u l a t e  mul t ip le  s c a t t e r i n g  (which oux MS approximation ignores)  i s  very 

s i m i l a r  f o r  both.  On t h e  o t h e r  hand, t he  SS approximation e r r o r s  a r e  s i g n i f i c a n t 1  

higher  f o r  Model Atmosphere B2, due t o  t h e  higher  values  of T~ s ec  @ . 

P S I  

S 

Perhaps the  most s i g n i f i c a n t  d i f f e rence  between t h e  t w o  da t a  groups A and B 

i s  the  p a r t i c u l a t e  phase funct ion.  Thus, f o r  example, l e t  us compare the  d a t a  

se t  from Group A f o r  os = 30°, 

value .  This i s  e n t i r e l y  due t o  the  phase func t ions  for  t h e  log  normal and 

= 0.5 pm and T = 0.1848, with the  set from GrOUE 
P 

’ modified gamma d i s t r i b u t i o n s  used i n  t h i s  s tudy,  which are i n  t h e  r a t io  of 

200 t o  26.  

f o r  l a r g e  values  of @ the order has been reversed. This ,  again,  is due t o  

the  f a c t  t h a t  the  phase funct ion i s  normalized: more photons s c a t t e r e d  i n  

the  near  forward d i r e c t i o n  leaves fewer t o  be s c a t t e r e d  a t  l a r g e r  angles .  

I n  c o n t r a s t  t o  the  behavior i n  the forward d i r e c t i o n ,  we see that 

As t he  p a r t i c u l a t e  cont r ibu t ion  t o  the  s o l a r  aureole  inc reases ,  t h e  

molecular con t r ibu t ion  remains cons tan t ,  and, t hus ,  i t s  r e l a t i v e  contr ibu-  

t i o n  is  decreased. This observat ion accounts f o r  t h e  somewhat lower accuracy 

of t h e  M S  approximation i n  accounting f o r  the  Group B da t a :  the  f r a c t i o n  of 

t h e  mul t ip l e  s c a t t e r i n g  i t  provides f o r  has been reduced. 

With a s t rong ly  forward-peaked phase funct ion,  such as t h a t  f o r  t h e  

Group B da t a ,  t he  con t r ibu t ion  of p a r t i c u l a t e  s i n g l e  s c a t t e r i n g  r e l a t i v e  

t o  a l l  o the r  con t r ibu t ions  i s  s i g n i f i c a n t l y  increased by comparison with the  

s i t u a t i o n  f o r  a f l a t t e r  phase funct ion.  Thus, we s e e  t h a t  the  SS approxima- 

t i o n  i s  m o s t  accura te  f o r  the  Group B da t a  i n  t he  near  forward d i r ec t ion .  

However, by the  t h e  w e  reach azimuth angles  of 15 t o  20 , the  accuracy of 

the  SS approximation f a l l s  o f f  s i g n i f i c a n t l y ,  as we move ou t  of t he  aerosol  

d i f f r a c t i o n  peak. The continued accuracy of the  MS approximation i n d i c a t e s  

t h a t  it remains capable of accounting f o r  much of t h e  M S  a t  these  angles.  

0 0 

ORIGINAL PAGE IS 
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From Data Group A (Table 2 . 7 )  we concluded t h a t  t he  M S  approximation 

w a s  most u s e f u l  when the  r a t io  of  molecular t o  p a r t i c u l a t e  s c a t t e r i n g  w a s  

high. The D a t a  Group B r e s u l t s  (Table 2.8) are i n  agreement with t h i s  conclusion. 

although we must now apprec ia t e  t h a t  t h i s  r a t i o  depends no t  only on the r a t io  

T ~ / T ~ ,  b u t  a lso on the shape of t he  p a r t i c u l a t e  phase func t ion .  

For t w o  of the three wavelengths included i n  the  Group B s t u d i e s ,  ozone 

absorpt ion i s  p resen t .  Since we have not  made paral le l  computations w i t h  

t h i s  f a c t o r  removed, w e  cannot make any c a t e g o r i c a l  s ta tements  of  i t s  e f f e c t s .  

Nevertheless ,  t h e r e  i s  nothing i n  t h e  d a t a  i n  T a b l e  2.8 t o  suggest  t h a t  the 

presence of ozone absorp t ion  is  l i k e l y  t o  reduce t h e  u t i l i t y  of OUT MS 

approximation. 

So far ,  w e  have made only passing remarks concerning the e f f e c t s  Of 

ground albedo. The r e s u l t s  w e  have presented suggest that, i n  genera l ,  

t he  con t r ibu t ion  from ground-reflected photons is  s m a l l .  The only except ion 

is  l i k e l y  t o  occur i n  those cases  where the  r a t i o  of molecular t o  p a r t i c u l a t e  

s c a t t e r i n g  i s  excessive.  The reason f o r  t h i s  i s  t h a t ,  i n  t he  angular  range 

from 90 t o  150 , t he  region most responsible  f o r  r e - sca t t e r ing  ground- 

r e f l e c t e d  photons back t o  e a r t h ,  the  molecular phase f u n c t i o n  dominates t h e  

p a r t i c u l a t e  by a s  much a s  an order  of magnitude. Thus, w e  note that  an 

albedo of 0.25 i n  Table 2.7 con t r ibu te s  about as much a d d i t i o n a l  i n t e n s i t y  as 

an albedo of 0.4 i n  Table 2.8, and considerably more i f  w e  consider  t h e  f r a c t i o n a l  

i nc rease .  

0 0 

One of  t he  obvious advantages of our  M S  approximation, over the  Ss 

approximation, i s  t h a t  it is ab le  t o  make allowance f o r  a non-zero ground 
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albedo. I t  i s ,  the re fo re ,  i n s t r u c t i v e  t o  examine t h e  v a r i a t i o n  i n  t h e  per- 

centage e r r o r s  a s  t he  albedo i s  increased .  The r e s u l t s  of Tables 2.7 and 2.8 

show t h a t ,  not only does our  M S  approximation r e t a i n  i ts  accuracy a s  albedo 

inc reases ,  b u t ,  i n  genera l ,  i t s  accuracy improves. W e  may even observe 

ins tances  where the  MS approximation over-estimates the  a c t u a l  radiance.  

This can be  understood from an examination of t he  omitted terms i n  Eq. 

f o r  LD. Since,  P is s i g n i f i c a n t l y  l a r g e r  than P over an important angular  

region (when ground r e f l e c t i o n  i s  p r e s e n t ) ,  w e  see t h a t  P w i l l  be  nega t ive  

(9) 

M P 

D 

' under such circumstances.  Thus, t hese  two omit ted i n t e g r a l s  are l i k e l y  t o  

be  of oppos i te  s ign ,  implying t h a t  the  co r rec t ion  t o  L may b e  e i t h e r  

posi t ive o r  negat ive.  

D 

A l l  t h e  r e s u l t s  presented i n  t h i s  paper have been obtained w i t h  one 

value (namely, m '  = 1.55) of t h e  r e a l  p a r t  of t h e  ae roso l  r e f r a c t i v e  index, 

and, thus ,  we cannot r e a l l y  comment on the  e f f e c t  of  t h i s  parameter. However, 

i t  i s  gene ra l ly  accepted t h a t  the r e a l  p a r t  of t h e  r e f r a c t i v e  index has  

l i t t l e  e f f e c t  on t h e  d i f f e rences  i n  sca t t e red  rad iances  (obtained by t h e  M S  and 

SS approximation and RT c a l c u l a t i o n s ) ,  e s p e c i a l l y  i n  t h e  aureole  region 

where d i f f r a c t i o n  s c a t t e r i n g  predominates. Also,  we cannot comment much 

on t h e  inf luence  of aerosol  absorpt ion,  s ince  r e s u l t s  of only one value 

(m" = 0.02)  of t h e  imaginary p a r t  of t h e  aerosol  r e f r a c t i v e  index have been 

obtained (Table 2 . 9 ) .  However, when the  r e s u l t s  i n  Table 2 .9  a r e  compared w i t h  

those i n  Table 2 . 7 ,  w e  s ee  t h a t  the  percentage e r r o r s  (between the  th ree  sets 

of r e s u l t s )  a r e  r a t h e r  s imilar ,  a t  l e a s t  up t o  azimuth angles  of 1 5  

from t h e  sun. Thus, w e  f e e l  confident  i n  concluding t h a t  t h e  inc lus ion  of 

aerosol  absorp t ion  i n  no way diminishes t h e  u t i l i t y  of our  M S  approximation. 

0 t o  20° 
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When t h e  r e s u l t s  f o r  h igher  azimuth angles are examined, w e  s ee  t h a t  

t he  accuracy of  o u r  M S  approximation remains high ( e r r o r s  < 6%) a t  least  

out  t o  45 , and is q u i t e  acceptable  (< 13%) f o r  azimuth angles  of 90 . 0 0 

By c o n t r a s t ,  SS approximation d e t e r i o r a t e s  much more r ap id ly  f o r  high 

azimuth angles .  

F i n a l l y ,  t h e r e  i s  another  way i n  which our r e s u l t s  may be viewed. 

It is c l e a r  t h a t  measured radiances a r e  composed of both SS and higher  

order  s c a t t e r i n g .  

i n g  much of  t h e  d a t a  demonstrates t h a t  SS is  the  m o s t  s i g n i f i c a n t  component. 

The d a t a  presented  i n  t h i s  paper i nd ica t e  t h a t ,  i n  almost a l l  cases, use 

of  our  M S  approximation reduces by h a l f ,  and o f t e n  much more, t he  e r r o r s  

t h a t  occur due t o  t h e  SS approximation. Thus, w e  s e e  t h a t  t he  multiply- 

s c a t t e r e d  molecular component i s  perhaps the  next most important contr ibu-  

t i o n  t o  t h e  aureole  i n t e n s i t y ,  under r e l a t i v e l y  c l e a r  sky condi t ions .  

The genera l  success  of t he  SS approximation i n  explain-  

' 

(vi) e l i c a t i o n  of M S  Approximation t o  Size Distribution Retrievals 

Box and Deep& (Ref. 26)  have discussed i n  d e t a i l  a systematic  i n v e s t i g a t i o n  

of e r r o r s  i n  t h e  r e t r i e v e d  r e s u l t s  f o r  aerosol  s i ze  d i s t r i b u t i o n s  obtained from 

simulated almucantar radiance da t a  generated by our r a d i a t i v e  t r a n s f e r  code. 

R e s u l t s  were r e t r i e v e d  by using t h e  SS approximation, our MS approximation 

( a l s o  r e f e r r e d  t o  a s  t he  modified Deirmendjian-Sekera (D-S)  app roxha t ion )  

and the  McPeters and Green (M-G) method. (See Tables I and I11 i n  Ref. 26  

where d s t ands  f o r  tMs.) I t  w a s  demonstrated t h a t  the  r e t r i e v a l s  DS 
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of aerosol  s i z e  d i s t r i b u t i o n s  can be  considerably improved by using the  M S  

formulation descr ibed here ;  t h e  l a r g e s t  e r r o r s  occur f o r  t he  case of solar  

zeni th  angle  = 60 , 

e r r o r  i n  r e t r i e v e d  r e s u l t s  €or b ,  t he  mode r ad ius  parameter i n  the  Haze H 

model. W e  be l i eve  t h a t  t hese  e r r o r s  a r e  due l a r g e l y  t o  t h e  neglec t  of 

par t iculate  m u l t i p l e  s c a t t e r i n g .  By c o n t r a s t ,  t h e  e r r o r s  i n  b r e s u l t s  

r e t r i e v e d  from the same d a t a  by t h e  use  of t he  SS approximation were over  

9%. 

0 = 0 . 2 ,  -rP = 0.2 and A = 0.25, namely, about 2% 
TA S 

Thus by t h e  use of our MS approximation, t he  r e t r i e v a l  accuracy can 

be  improved by a f a c t o r  of  about four .  

(v i i )  S m r y  and Conclusions 

From t h e  r e s u l t s  i n  Tables 2.7,  2 .8  and 2 .9 ,  and t h e  previous d i scuss ions ,  

w e  a r e  able t o  conclude t h a t  our MS approximation provides  a s i g n i f i c a n t  

improvement over  SS approximation, with e s s e n t i a l l y  no e x t r a  computational 

e f f o r t .  Thus, it is  our  opinion t h a t  such SS c a l c u a l t i o n s  should be 

supplemented with the  MS con t r ibu t ion  discussed i n  t h i s  s e c t i o n .  

Our r e s u l t s  have shown t h a t ,  i n  almost a l l  i n s t ances ,  inc lus ion  of 

t h i s  molecular M S  con t r ibu t ion  reduces the  e r r o r s  obtained with SS approxi- 

mation by a f a c t o r  of  a t  least  two, and usua l ly  more. In  p a r t i c u l a r ,  our  

MS approximation w i l l  provide g r e a t e s t  improvement i n  those cases  where 

the  r a t i o  of  Rayleigh t o  p a r t i c u l a t e  s c a t t e r i n g  is  high,  and/or where t h e  

ground albedo con t r ibu t ion  is s i g n i f i c a n t .  

We may conclude, t he re fo re ,  t h a t  t h e  M S  approximation, a s  ou t l ined  i n  

Eqs. (43 )  , (48)  and (SO), is of considerable  value i n  providing d e t a i l s  of 
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the aureole radiance pattern in a hazy atmosphere, with relatively high 

accuracy, at a fraction of the cost of a full, radiative transfer calculation. 

In addition, it can improve the accuracy of retrievals by a factor of at 

least four, compared to the SS approximation. 
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2.3.4 The F i n i t e  Sun Ef fec t  on t h e  I n t e r p r e t a t i o n  of Solar  Aureole  

Although it is  usua l ly  assumed t h a t  solar r a d i a t i o n  f a l l s  on t h e  e a r t h ' s  

atmosphere i n  t h e  form of plane waves, t h e  f i n i t e  angular s i z e  of t h e  solar 

d i sk  con t r ad ic t s  t h i s  assumption. For m o s t  purposes, t h i s  f i n i t e  sun e f f e c t  

on computed or  measured r a d i a t i o n  q u a n t i t i e s  i s  negl ig ib le .  However, i n  t h e  

region of t he  s o l a r  aureole, which is  dominated by aerosol  d i f f r a c t i o n  scatter, 

ing ,  measurable e f f e c t s  may be obtained. I n  R e f .  45, w e  have shown t h a t  the 

f i n i t e  sun e f f e c t  is  r e l a t e d  t o  d e r i v a t i v e s  of the s c a t t e r i n g  phase func t ion  

and t h a t  a 1 percent  e f f e c t  may be obta ined  close t o  t h e  sun i f  enough 

l a r g e  particles are p resen t  i n  t h e  atmosphere. 

I n  t h e  past, when measurement techniques w e r e  no t  too precise (Ref. ' 3 ) ,  

it was f e a s i b l e  t o  i n t e r p r e t  t hese  d a t a  using t h e  simplest possible model, 

namely, s i n g l e  s c a t t e r i n g  by molecules and aerosols from a point-source sun. 

As measurement accuracy has  improved, however, m o r e  a t t e n t i o n  has been devoted 

t o  t h e  rennval of  as  many sources  of e r r o r  as poss ib l e  from t h e  inve r s ion  

process.  

Most of  t hese  sources  of e r r o r  are a s soc ia t ed  with t h e  phys ica l  process  

of r a d i a t i v e  t r a n s f e r :  absorp t ion  by t r a c e  gases  such as ozone, and mul t ip l e  

s c a t t e r i n g .  Recently, King and Byrne (Ref. 46) have shown how t o  make a 

f a i r l y  accura te  allowance f o r  t h e  ozone Chappius band, and w e  have shown 

how t o  make a t  least  a par t ia l  accounting f o r  mul t ip l e  s c a t t e r i n g .  More 

work i n  t h i s  area is  undoubtedly needed, e spec ia l ly  i n  regard t o  mul t ip l e  

s c a t t e r i n g  i n  r e l a t i v e l y  hazy condi t ions .  

One source of poss ib l e  e r r o r  i n  t h e  a n a l y s i s  of  s o l a r  aureole  da t a  is 

concerned not  with t h e  problem of the  t r a n s f e r  of  solar r ad ia t ion  through t h e  

2-76 



terrestr ia l  atmosphere but  with the  source of  t h a t  r a d i a t i o n ,  t h e  sun i t s e l f .  

I n  a l l  ana lyses  t h a t  w e  are aware o f ,  it has been assumed t h a t  t he  sun i s  a 

point source a t  i n f i n i t e  d i s tance ,  and t h a t  s o l a r  r a d i a t i o n  f a l l s  on the  top 

of t h e  atmosphere i n  plane waves. While the  small angular  s i z e  of  t he  sun 

ensures  that t h e  error involved i n  using t h i s  approximation i s  q u i t e  s m a l l ,  

it i s  neve r the l e s s  important t o  have a c l e a r  understanding of t he  magnitude 

of t h i s  e r r o r ,  and mre espec ia l ly  of any s p e c i a l  circumstances which could 

s i g n i f i c a n t l y  inc rease  it. I n  Ref. 4 5 ,  w e  examine t h i s  e f f e c t  i n  d e t a i l ,  

both q u a l i t a t i v e l y  and quan t i t a t ive ly .  The r e s u l t s  are discussed here .  

I n  t h e  s ing le - sca t t e r ing  approximation, photons a r r i v i n g  a t  a d e t e c t o r  

a long a given d i r e c t i o n  may have o r ig ina t ed  from d i f f e r e n t  po in t s  on the 

sun's d i s k  and t h u s  been s c a t t e r e d  through d i f f e r e n t  s c a t t e r i n g  angles .  

I f  t h e  s c a t t e r i n g  phase funct ion i s  varying slowly wi th  angle  i n  t h i s  angular  

range, t h e  e f f e c t  w i l l  be negl ig ib le .  Thus, i n  a pure ly  Rayleigh s c a t t e r i n g  

atmosphere, the f i n i t e  sun e f f e c t  can be s a f e l y  ignored. 

By c o n t r a s t ,  i f  t he  phase func t ion  i s  varying r ap id ly ,  as is  t h e  case i n  

t h e  forward d i f f r a c t i o n  peak of typical ae roso l  phase func t ions ,  t h e  

effect  may not  be i n s i g n i f i c a n t .  Thus w e  have seen t h a t  a f a i r l y  typical 

ae roso l  s i z e  d i s t r i b u t i o n  leads  t o  an e f f e c t  of t h e  o rde r  of half a pe rcen t  

wi th in  a degree of  t h e  sun and of seve ra l  t en ths  of  a percent  ou t  t o  a 5 O  

s c a t t e r i n g  angle .  Beyond t h i s  angle ,  t he  e f f e c t  w a s  l e s s  than 0.1 percent .  

The presence of  a d d i t i o n a l  l a r g e  particles would undoubtedly increase  t h e s e  

numbers .  Thus, w e  be l i eve  t h a t  i f  it is des i red  t o  make measurements of 

0.1 pe rcen t  accuracy c l o s e  t o  the  s u n ' s  d i sk ,  f o r  t h e  purposes of determining 

t h e  ae roso l  phase func t ion  and/or s i z e  d i s t r i b u t i o n ,  then some attempt 
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ought t o  be made t o  account f o r  t h e  f i n i t e  sun effect, even i f  only af ter  

t h e  f a c t .  

The e f f e c t  of mul t ip l e  s c a t t e r i n g  is ,  of course,  t o  smear o u t  t h e  

d e t a i l s  of t h e  phase func t ion ,  and thus  w e  can see no need t o  inc lude  t h e  

f i n i t e  sun e f f e c t  i n  r a d i a t i v e  t r a n s f e r  c a l c u l a t i o n s  f o r  moderate t o  t h i c k  

atmospheres. I n  f a c t ,  t h e  only  t i m e  when t h e  f i n i t e  sun e f f e c t  is  l i k e l y  t o  have 

any possible s i g n i f i c a n c e  is  i n  t h e  s o l a r  aureole ,  which is  dominated by t h e  

d i f f r a c t i o n  peak of t h e  a e r o s o l  phase func t ion .  

s i t u a t i o n  t h a t  t h e  a n a l y s i s  i n  this paper w a s  developed. 

It w a s  f o r  j u s t  such a 
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2.4 INVERSION OF SIMULATED SOLAR AUREOLE RADIANCE DATA 

2.4.1 Retrieval of Aerosol Size Distributions by Inversion of 

Simulated Multiple Scattered Aureole Daza 

Inversion of solar almucantar radiance data is a simple and practical 

method of obtaining aerosol size distributions. In this section, similar to 

Ref. 26, we have inverted a number of sets of simulated data, using the 

standard single scattering approximation, to test the errors involved in 

ignoring multiple scattering. 

techniques: 

Deirmendjian and Sekera; and the other that of McPeters and Green. 

We have also inverted the data using two 

one, Box and Deepak's modification of the method proposed by 

In section 2.3 (and Ref. 281, we compared the relative contributions 

of multiple scattering (MS) and single scattering (SS) to the solar aureole 

almucantar radiance distribution, as obtained by a radiative transfer (RT) 

code. In this section, we shdill determine the effects of multiple scattering 

on the retrieval of the aerosol size distribution from the almucantar 

radiance data. 

The results of section 2.3 indicate that, although the single scattering 

approximation is reasonable for most visible wavelengths, multiple scattering 

contributions may not be negligible even in clear sky conditions, and may 

introduce significant errors in the retrieved size distribution, especially 

with regard to its absolute magnitude. In this section, first, we invert a 

number of sets of almucantar radiance data to obtain size distribution, 

using the single scattering approximation; and then consider two other 

approximations in which multiple scattering due to a molecular atmosphere 

alone is taken into account. As will be seen later on, the results obtained 

in the first case show significant errors in some cases, whereas in the latter 

two cases there are improvements in the retrieved size distribution. 
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The symbols adopted i n  t h i s  s ec t ion  fol low those recommended by the  

In t e rna t iona l  Radiation Commission (Ref. 471, except f o r  the  o p t i c a l  depth,  

which w i l l  be denoted by r. 

(i) S i n g l e  S c a t t e r i n g  R a d i a n c e  i n  S o l a r  A u r e o l e  A l m u c a n t a r  

W e  have run the  Box and Deepak code (Ref. 28) f o r  a series of  molecular 

and p a r t i c u l a t e  o p t i c a l  th icknesses ,  T and r , and a s e r i e s  of  s o l a r  z e n i t h  

angles  , ($s. 

d i s t r i b u t i o n  (Refs. 37 and 40)  of t h e  form 

M P 
The ae roso l  s i z e  d i s t r i b u t i o n  employed w a s  a modified gamma 

2 -br 
n ( r )  = a r  e , (0.03 m < r < 3.0 m) (55) 

-1 2 
We chose b = 10 urn ; parameter a w a s  given by a = 4 . 5  x 10 T W e  used 

a wavelength ( A )  of 0.55 pm, and a r e a l  r e f r a c t i v e  index (m) of 1.55. As 

P' 

ozone absorpt ion w a s  ignored, the  s i n g l e  s c a t t e r i n g  albedo (z) throughout the 

model atmosphere was 1.0.  

Using these  inpu t s ,  t h e  code generates  a considerable  amount of  radiance 

d a t a ,  a t  ground l e v e l ,  t he  top  of the  atmosphere and a t  one o r  t w o  i n t e r -  

mediate l e v e l s .  I n  t h i s  paper ,  w e  w i l l  be concerned with only the ground 

l e v e l  radiances along the  almucantar ( i - e . ,  a scan f o r  which observat ion 

zeni th  angle equals  s o l a r  zen i th  a n g l e ) .  

I n  Ref. 28, w e  compared these  r a d i a t i v e  t r a n s f e r  radiances with 

radiances given by the  very simple formula f o r  the  s i n g l e  s c a t t e r i n g  rad i -  

I n  the  almucantar,  t h i s  formula reduces t o  the  form (Ref. 1) ss - ance L 
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(ii) Inversion i n  the Single Scattering Approximation 

Since t h e  problem of i n v e r t i n g  s c a t t e r e d  radiance d a t a  is  s imples t  i n  

0 
t h e  s i n g l e  s c a t t e r i n g  approximation and i n  t h e  forward angles  (less than 20 1 ,  

w e  s h a l l  t reat  t h i s  case f i r s t .  Here, the  s imulated r a d i a t i v e  t r a n s f e r  

d a t a ,  L i n  t h e  almucantar i n  t h e  forward d i r e c t i o n  w i l l  be inve r t ed  

using the s i n g l e  s c a t t e r i n g  r e l a t i o n  i n  Eq. 

RT 
(56) t o  determine the  s i z e  

d i s t r i b u t i o n .  

I n  order  t o  do t h i s ,  LRT i s  s u b s t i t u t e d  f o r  Lss i n  Eq. (56) , which is  

rearranged t o  g ive  

where by d e f i n i t i o n  Fp($), t he  column s c a t t e r i n g  func t ion ,  i s  given by the  

r e  l a t i o n  

where Q ( r , y )  i s  t h e  ae roso l  a l t i t u d e - s i z e  d i s t r i b u t i o n  func t ion  (Ref. 3 7 )  , 

y is  the  a l t i t u d e  (km), and i 

and 40) .  

and i2 a r e  the  Mie i n t e n s i t i e s  (Ref. 32 1 

Since Eq. ( 5 6 )  is  only the  s i n g l e  s c a t t e r i n g  approximation t o  the  

r a d i a t i v e  t r a n s f e r  equat ion,  w e  r e f e r  t o  Fp(@) as obtained from Eq. ( 5 7 )  

as an e f f e c t i v e  column s c a t t e r i n g  func t ion .  Hence, t he  s i z e  d i s t r i b u t i o n  
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obtained by i n v e r t i n g  Eq. ( 5 8 )  is  r e f e r r e d  t o  as an e f f e c t i v e  s ize  d i s t r i -  

but ion.  A ques t ion  of considerable  importance is  then:  how c l o s e  i s  t h i s  

e f f e c t i v e  s i z e  d i s t r i b u t i o n  t o  the  o r i g i n a l  d i s t r i b u t i o n  which a c t u a l l y  

produced the  observed (or i n  the  case he re ,  s imulated)  s c a t t e r i n g  p a t t e r n ?  

To answer t h a t  ques t ion ,  w e  have inve r t ed  a series of sets ofsimu- 

. lated d a t a  us ing  E q s .  ( 5 7 )  and ( 5 8 ) .  W e  assumed a s i z e  d i s t r i b u t i o n  o f  t h e  

form i n  Eq. (551, with a and b as ad jus t ab le  parameters,  and used a non- 

l i n e a r  least squares  invers ion  code t o  determine t h e i r  b e s t  €it values .  

These va lues  can then  be compared with t h e  o r i g i n a l  va lues ,  t o  provide 

us  w i t h  an i n d i c a t i o n  of the  agreement between t h e  

a c t u a l  s i z e  d i s t r i b u t i o n .  

c e t r i e v e d  and the  

I t  should be poin ted  o u t  t h a t  by assuming t h e  func t iona l  form of  

E q .  ( 5 5 )  f o r  our  unknown s i z e  d i s t r i b u t i o n , r a t h e r  than performing a 

point-by-point i nve r s ion  of Chahine- o r  Twomey-type (Ref. 481, w e  are not  

b i a s i n g  t h e  r e s u l t s .  The main t h r u s t  o f  t h i s  paper i s  t o  compare d i f -  

f e r e n t  methods of making allowance f o r  mul t ip le  s c a t t e r i n g ,  no t  d i f f e r e n t  

methods o f  i n v e r t i n g  t h e  i n t e g r a l  equat ion ,  E q .  ( 5 8 ) .  I n  t h i s  regard ,  to 

compare t h e  o r i g i n a l  s i z e  d i s t r i b u t i o n  with those  obta ined  from a poin t -  

by-point invers ion  may not  lead t o  any d e f i n i t e  conclusions.  

hand, w e  f e e l  t h a t  t h e  r e t r i eved  va lues  of t h e  two ad jus t ab le  parameters,  

a and b ( i n  t h e  s i z e  d i s t r i b u t i o n  model, E q .  ( 5 5 ) ) ,  which are r e l a t e d  t o  

the  t o t a l  number of p a r t i c l e s ,  and t h e  mode r a d i u s ,  r e spec t ive ly ,  pro- 

vide a precise q u a n t i t a t i v e  t e s t  of t h e  methods w e  are  examining. 

On the  o t h e r  
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Using t h e  s i n g l e  s c a t t e r i n g  approximation, w e  have inve r t ed  e i g h t  

s e t s  of  d a t a  obtained from t h e  e i g h t  combinations of  t h e  parameters 

0 0 = 0 . 1  o r  0 . 2 ,  T = 0 .1  o r  0 .2  and 0 = 30 o r  60 . For each d a t a  s e t ,  

w e  obtained s imulated radiance da ta  f o r  t h ree  cases: (1) s i n g l e  s c a t t e r i n g  

only; ( 2 )  r a d i a t i v e  t r a n s f e r  with ground albedo A = 0.0; and (3) r a d i a t i v e  

t r a n s f e r  with A = 0.25. Each of t h e  twenty-four sets of  radiance da t a  con- 

s i s t e d  of  20  va lues ,  corresponding t o  azimuth angles  from 0 

Inversion w a s  performed on each set  of  radiance da ta .  T a b l e  1 gives  t h e  

TM P S 

0 t o  19O. 

r e t r i e v e d  va lues  of  a ,  b and mode r ad ius  r (rm = 2/b) f o r  each of  t h e  24  

sets of  da ta .  

m 

A s  expected,  when w e  inver ted  the  s i n g l e  s c a t t e r i n g  radiance da ta ,  

(shown i n  Case 1, Table 101, w e  go t  back the  o r i g i n a l  va lues  of a and b. 

Considerat ion of t he  o t h e r  t w o  cases  (namely, 2 and 3 )  i n  Table 10 

shows t h a t ,  a s  suggested i n  Paper I ,  the  r e t r i e v e d  s i z e  d i s t r i b u t i o n  

parameters a and b obtained from the  inversion of the  r a d i a t i v e  t r a n s f e r  

da t a  agree reasonably w e l l  wi th  the  input  da t a  f o r  b ( o r  r 1 ,  but  show 

l a rge  d iscrepancies  €or a ,  which  i s  related t o  t h e  absolu te  normalization. 

For small  va lues  o f  $ s  T T and A = 0.0,  t h e  r e t r i e v e d  s i z e  d i s t r i b u t i o n  

shows the  b e s t  agreement, with t h i s  agreement d e t e r i o r a t i n g  s t e a d i l y  a s  

any of t he  four  parameters i s  increased.  These t r ends  a r e  j u s t  a s  would 

m 

M' P 

be expected, s ince  an increase  i n  any of these  parameters w i l l  c l e a r l y  

lead  t o  an inc rease  i n  the  mul t ip le  s c a t t e r i n g  con t r ibu t ion  r e l a t i v e  to 

the  s i n g l e  s c a t t e r i n g  cont r ibu t ion .  
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TABLE 2.10: Retrieved S i z e  D i s t r i b u t i o n  P a r a m e t e r s  a and b U s i n g  the S i n g l e  
S c a t t e r i n g  Approxima t ion 

CASE 

1 

2 

30° 

r = 2 /b  % E r r o r  i l  b (Prn-l) m a 

44986 10.000 0.2000 0.00 

51590 10.169 0.1967 1.69 

I I I I Single  Sca t t e r ing  Approximation 

3 

1 

I T p  
TM 

57404 10.308 0.1940 3.08 

44983 10.000 0.2000 0.00 

0.2 I 0.2 

2 

3 

60083 10.367 0.1929 3.67 

72418 10.616 0.1884 6.16 

1 

2 

89986 10.000 0.2000 0.00 

107680 10.219 0.1957 2.19 

3 

1 

115630 10.312 0.1939 3.12 

89981 10.000 0.2000 0.00 

2 

3 

119130 10.350 0.1932 3.50 

133750 10.504 0.1904 5.04 

60° 

2-84 

0 .1  0.1 1 44986 10.000 0.2000 0.00 

2 59451 10.373 0.1928 3.73 

3 65161 10.504 0.1904 5.04 

0.2 0.1 1 44971 9.999 0.2000 0.01 

2 76021 10.725 0.1865 7.25 

3 88741 10.955 0.1826 9.55 

0.1 0.2 1 899 7 8 10.000 0.2000 0 .oo 

0.2 

2 132900 10- 516 0.1902 5.16 

3 141960 10.612 0.1885 6.12 

0.2 1 89996 10.000 0.2000 0.00 

2 157270 10.760 0.1859 7.60 

3 1 174230 10.912 0.1833 9.12 



A. Inf luence of Opt ica l  Thickness 

When T i nc reases  from 0 .1  t o  0.2,  w e  see a marked d e t e r i o r -  M 

a t i o n  i n  t h e  accuracy of  t h e  invers ion ,  with t h e  e r r o r  i n  b roughly 

doubling. 

very l i t t l e  d e t e r i o r a t i o n ,  and i n  some cases ,  a s m a l l  improvement i n  t h e  

value of  b. The most obvious explanat ion i s  t h a t  it i s  molecular s ca t -  

t e r i n g  which is  m o s t  r espons ib le  f o r  mul t ip le  s c a t t e r i n g .  Thus, w e  may 

regard t h e  con t r ibu t ion  due t o  Rayleigh s c a t t e r i n g  (which i s  s m a l l  i n  t h e  

aureole)  as no i se ,  which d i s t o r t s  t h e  s i g n a l  due t o  p a r t i c u l a t e  scat- 

t e r i n g .  

r a t io  and t h e  mre accura t e ,  i n  genera l ,  is  t h e  r e t r i e v e d  parameter b. 

O n  the o t h e r  hand, when T p  i nc reases  from 0 . 1  t o  0 . 2 ,  w e  s e e  

The b e t t e r  t h e  ra t io  of  Tp t o  TM, t h e  b e t t e r  t h e  signal t o  no i se  

B. Inf luence of S o l a r  Zenith Angle 

Increas ing  os has two effects. F i r s t ,  t h e  o p t i c a l  p a t h , l e n g t h  

o r  a i r  mass i s  increased ,  and w e  may r e f e r  t o  the  e a r l i e r  d i scuss ion  of  

t h i s  e f f e c t .  Second, the  s c a t t e r i n g  angle ,  $, becomes c l o s e r  t o  the  cor re-  

sponding azimuth angle ,  w .  

$ = 16.4 

con t r ibu t ion  from molecular s c a t t e r i n g  s ince  t h e  Rayleigh phase funct ion 

i s  c lose  t o  i s o t r o p i c  and the  p a r t i c u l a t e  phase funct ion is usual ly  s t rong ly  

forward-peaked. This  implies  a d e t e r i o r a t i o n  of  the  above-mentioned s ig -  

n a l  t o  n o i s e  ra t io .  

0 Thus, f o r  w = 19O, $ = 9.5 when $s = 30°; 

0 when os = 60°. The g r e a t e r  the  value of $, the  g r e a t e r  i s  t h e  

The above discussions and the  r e s u l t s  shown i n  Table 10 s t rong ly  sug- 

g e s t  t h a t  it i s  mul t ip le  s c a t t e r i n g  due t o  atmospheric molecules, r a t h e r  

than ae roso l s ,  which i s  the  main cause of the  poor s i z e  d i s t r i b u t i o n  

r e t r i e v a l s .  
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I n  order  t o  improve the  accuracy of  our  r e t r i eved  s i z e  d i s t r i b u t i o n ,  I 
t h e  next  b e s t  approach t o  an exact  so lu t ion  of  t he  r a d i a t i v e  t r a n s f e r  

equat ion i s  t o  take  i n t o  account mul t ip le  s c a t t e r i n g  due t o  molecules ,  1 
along with s i n g l e  s c a t t e r i n g  due t o  both ae roso l s  and molecules. A i 
survey of  t h e  l i t e r a t u r e  ind ica t e s  t h a t  such a s t r a t e g y  f o r  r e t r i e v i n g  

ae roso l  s i z e  d i s t r i b u t i o n s  from d i f f u s e  ( i . e . ,  s i n g l e  p lus  mul t ip le  s ca t -  

t e r ing ) rad iance  da ta  w a s  proposed by Sekera ( R e f .  42) and Deirmendjian 

( R e f s .  38,  39, and 41). Their  method i s  e s s e n t i a l l y  a pe r tu rba t ion  approach. 

However, so f a r  to  the  b e s t  of our knowledge, it has not  been appl ied  t o  1 

i any invers ion  problem. McPeters and Green (Ref. 4 )  t ake  account o f  the 

molecular mult iple  s c a t t e r i n g  i n  deducing the aerosol  size distribution 1 

from s o l a r  aureole  da ta .  Malchow and Whitney ( R e f .  49) have also included I 
t he  mul t ip le  s c a t t e r i n g  due t o  molecules i n  t h e i r  i nve r s ion  technique I 

I f o r  app l i ca t ion  t o  s u n l i t  horizon radiance p r o f i l e s  a s  might be measured 
I 

from s a t e l l i t e s .  

In  t h i s  paper ,  we s h a l l  demonstrate how the  r e t r i e v a l s  of ae roso l  

s i z e  d i s t r i b u t i o n s  can be improved when w e  use a modif icat ion of the  

Deirmendjian-Sekera Perturbat ion method ( R e f .  41 )  t o  i n v e r t  our simulated 

da ta  f o r  s o l a r  aureole  almucantar radiance.  For the  sake of  comparison, 

t he  s i z e  d i s t r i b u t i o n  r e s u l t s  by the  McPeters and Green scheme w i l l  a l s o  

be obtained.  Both these  methods a r e  explained next .  

(iii) Description of the Approximate Methods 

A. Dermendjian-Sekera (D-S) Per turba t ion  Method 

The equation of r ad ia t ive  t r a n s f e r  i n  a plane p a r a l l e l  atmosphere 

w i t h  s c a t t e r i n g  bu t  no absorpt ion can be wr i t t en  as 
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where 

P ( T I  = {a P + crp PP}/UTOT 
TOT M H  

a.c 
(60b) , i = Iv., P ,  TOT 0. = - -  

1 a, where 

Equation (56) can be  obtained from Eq. (59) by ignoring the i n t e g r a l  on t h e  r f g h t  

hand s i d e  and s e t t i n g  $ = $ s .  

Following Sekera ( R e f .  4 2 )  and Deirmendjian ( R e f s .  39, 41), w e  may re-express  

Eq. (60) i n  t h e  form 

where 

'TOT (TI = P M + f ( T )  P D 

= P  - P  
'D P M 

is known a s  t h e  t u r b i d i t y  f a c t o r ,  or t u r b i d i t y  c o e f f i c i e n t .  

S i m i l a r l y  w e  may separa te  the  l i g h t  f i e l d  i n t o  two p a r t s ,  v i z . ,  

where by d e f i n i t i o n  r e p r e s e n t s .  the  radiance f i e l d  prodcced by Rayleigh 

s c a t t e r i n g  a lone ,  and L t he  depar ture  from t h i s  case d u e  t o  the  d i f f e r e n c e  i n  D' 
s c a t t e r i n g  p a t t e r n s  between molecules and ae roso l s ,  as expressed Eq. ( G 2 a ) .  
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I 

If w e  s u b s t i t u t e  Eqs.  (62) and (63 i n t o  Eq.  (591, and remember t h a t  LM s a t i s f i e s  

Eq.(59) with PTOT replaced by P , w e  f i n d  t h a t  fou r  terms cance l ,  l eav ing  t h e  

following i n t e g r o d i f f e r e n t i a l  equation f o r  5.  
M 

This equation i s  probably b e s t  solved by the successive sca t te r -ng  method, 

provided t h a t  Rayleigh r ad ia t ion  f i e l d ,  LM, is known throughout t h e  atmosphere. 

As y e t  w e  know of no se r ious  attempt to  a c t u a l l y  pursue this l i n e  t o  i t s  l o g i c a l  

conclusion. 

In  the  region of the  solar aureole ,  Deirmendjian (Ref. 41) employed 

a s i n g l e  s c a t t e r i n g  approach t o  Eq. (641, by neg lec t ing  both the  i n t e g r a l  

terms. Solu t ion  of Eq. (64) i s  then q u i t e  s t ra ight forward .  Along t h e  

almucantar,  t he  s i n g l e  s c a t t e r i n g  s o l u t i o n ,  LD , i s  p a r t i c u l a r l y  simple,  

and takes  the  form 

ss 

i . e . ,  

B. McPeters and Green (M-G) Method 

From a study of the  tabula ted  r e s u l t s  of Coulson, e t  a l .  

(Ref. 35)  f o r  molecular atmospheres, McPeters and Green observed t h a t  the  

shape of the  r a d i a t i v e  t r a n s f e r  radiance was very s imilar  t o  t h a t  of t he  

(6: 
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s i n g l e  s c a t t e r i n g  p a t t e r n  ( a t  l e a s t  i n  the  aureole  r e g i o n ) ,  bu t  d i f -  

fe red  from it i n  absolu te  value.  

an ae roso l  p l u s  molecular atmosphere i n  Paper I and discussed i n  the  

S imi la r  conclusions were drawn by us f o r  

following s e c t i o n s .  Therefore,  McPeters and Green proposed t o  introduce 

t o  the  Rayleigh o p t i c a l  depthT t h a t  would a co r rec t ion  factor , 

i nc rease  t h e  s i n g l e  s c a t t e r i n g  radiance values  t o  match the  r a d i a t i v e  

t r a n s f e r  radiance va lues .  W e  may express  t h e i r  r e s u l t s  a s  follows: 

M 

T ) is  t h e  e f f e c t i v e  Rayleigh o p t i c a l  depth,  and CMG is  where dMG 

adjus ted  t o  g ive  a s u i t a b l e  fit t o  L M d a t a  f o r  a molecular atmosphere ( i .e . ,  

(= 'MG M 

f o r  T = 0 ) .  P 
C. Box and Deepak Modification t o  t h e  D-S Method 

To ob ta in  the  Rayleigh f i e l d  con t r ibu t ion  t o  the  slmucantar 

radiance i n  the  D-S method, it is  necessary t o  so lve  the  r a d i a t i v e  t r ans -  

f e r  equat ion fo r  L 

However, i n s t e a d  of following t h i s  procedure, w e  model t he  L p a r t  of t h e  

radiance f i e l d  a f t e r  Eq.;(66) , such t h a t  

i n  terms of P --a r e l a t i v e l y  s t ra ight forward  t a s k .  
M M 

M 

where d 

dDS 

i s  r e f e r r e d  t o  a s  t he  e f f e c t i v e  Rayleigh o p t i c a l  thickness .  Here DS 

can be ad jus ted  t o  give an exac t  f i t  t o  t he  t r u e  molecular radiance d a t a ,  

e i t h e r  a t  some s c a t t e r i n g  angle ,  I$, ( e .g . ,  I$ = 0 0 ) ,  o r  t o  give the  b e s t  f i t  

( i n  a least  squares  sense) over a range of angles .  

have found these  two approaches t o  y i e ld  d 

In our s tud ie s  so f a r ,  w e  

values  t h a t  agree within 1%, f o r  
DS 
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0 azimuth angles  o u t  t o  20  , o p t i c a l  th icknesses  a s  high as 0.6,  zen i th  

angles  as l a rge  a s  70 , and ground albedos as high a s  0.8. This implies  

t h a t  i n  the  solar aureole  region,  the  shape of t h e  molecular-scat tered 

almucantar radiance p a t t e r n ,  L follows t h e  func t iona l  form of t h e  molecular 

phase func t ion ,  PM, very c lose ly .  

E q .  ( 6 7 )  i s  highly accura te ,  a t  least  f o r  t h e  da t a  we have examined. 

This  modif icat ion of  t he  o r i g i n a l  D-S approach represents  a considerable  

s i m p l i f i c a t i o n  with no loss of  accuracy. 

0 

M 

Thus, t h e  approximation involved i n  

is  a funct ion T, Qs and ground albedo, A. N o t e  t h a t  i n  t he  s i n g l e  dDS 

dDS = T, no t  T m a t t e r i n g  approximation, 

(Ref.  18) o r  the r e s u l t s  of s epa ra t e  computations. We f e e l  tha t  a 

phenomenological formula f o r  t hese  e f f e c t i v e  o p t i c a l  th icknesses ,  d, as 

a func t ion  of T, Q and A would be of considerable  value and i s  c u r r e n t l y  

being inves t iga t ed .  These r e s u l t s  w i l l  be discussed i n  a subsequent 

It  can be obtained from t a b l e s  M' 

S 

pub l i ca t ion .  

W e  may now combine Eqs. (63) , (65)  I and 

LDs i n  the  Deirmendjian-Sekera approximation: 

(67) t o  g e t  t h e  t o t a l  radiance 

(P - /4T 
P P  

We see now t h a t  Eq.(68) i s  s t r u c t u r a l l y  i d e n t i c a l  t o  Eq.(56) (and a l s o  

Eq.  (66)), and i n  p a r t i c u l a r ,  can be inve r t ed  a f t e r  t he  manner of Eq .  (57)  t o  

ob ta in  the  s c a t t e r i n g  funct ion,  Fp($)  and, thence,  the  aerosol  s i z e  d i s t r i b u t i c  

Equations (56) and (68) d i f f e r  i n  only one p o i n t :  the  mul t ip le  s c a t t e r i n g  
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t 

con t r ibu t ion  due t o  molecules. Since d 

i s  l a r g e r  than T 

is l a r g e r  than T, (dDs - Tp)  DS 

and so Eq. (68) provides f o r  more molecular s c a t t e r i n g  
M 

than Eq.  (56) , although each contaj-ns the  same amount of  p a r t i c u l a t e  s c a t -  

t e r i n g .  This  i s  p r e c i s e l y  what w e  requi re .  

as given by Eq.  ( 6 8 ) ,  i s  no t  exac t ly  the  same LDS S t r i c t l y  speaking, 

a s  would be given i n  t h e  o r i g i n a l  Deirmendjian-Sekera formulation. We 

should,  o f  course,  have replaced the  Rayleigh phase func t ion  i n  Eq. (67) 

by a d i f f e r e n t  func t ion ,  t o  give the  c o r r e c t  angular  d i s t r i b u t i o n  f o r  t h e  

Rayleiqh radiance,  LM. 

i n  t h e  paragraph immediately following Eq. (67),  t h i s  func t ion  d i f f e r s  

very l i t t l e  from P a t  least  wi th in  t h e  range o f  parameters w e  have 

examined. A s  an i l l u s t r a t i o n  of t h e  b a s i c  v e r a c i t y  of Eq. ( 6 8 ) ,  Fig. 2.16 

shows t h e  s i n g l e  s c a t t e r i n g  radiance,  

t r a n s f e r  radiance , 

shown on the  same graph a r e  the  corresponding column s c a t t e r i n g  func t ions ,  

F ob ta ined  from t h e  radiances using Eq. (57) .  I t  i s  c l e a r  t h a t  a l l  

s i x  curves are e s s e n t i a l l y  i d e n t i c a l ,  d i f f e r i n g  only i n  v e r t i c a l  d i sp lace-  

m e n t .  ( W i t h i n  t h e  angu la r  range shown, P is e s s e n t i a l l y  c o n s t a n t . )  ’ 

Thus, w e  conclude t h a t ,  wi th in  the  aureole  reg ion ,  we can make allowance 

f o r  molecular mul t ip le  s c a t t e r i n g  simply by using an e f f e c t i v e  Rayleigh 

o p t i c a l  th ickness .  The e r r o r s  involved i n  t h i s  approximation a r e ,  i n  

genera l ,  considerably l e s s  than the  e r r o r s  involved i n  ignoring a l l  mul t ip le  

s c a t t e r i n g  events  involving ae roso l s .  

However, as has been suggested by t h e  d iscuss ion  

M’ 

a s  w e l l  a s  t he  f u l l  r a d i a t i v e  Lss 
f o r  two values  of the  ground albedo, A. A l s o  LRT ’ 

P’ 

M 

(iv) R e t r i e v a l s  b y  LY-G and  M o d i f i e d  D-S  M e t h o d s  

In  t h e i r  s t u d i e s ,  McPeters and Green (Ref. 4 )  employed a phenomenological 

formula f o r  dMG a s  a funct ion of  Do and X (and, hence, T ) based on the  pub- 

l i s h e d  r e s u l t s  of Coulson, e t  a l .  (Ref. 351,  with ground albedo ignored. 

M 
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In  t h i s  paper ,  w e  have obtained a l l  t h e  required d values  from a sepa ra t e  

s e r i e s  o f  runs of  o u r  r a d i a t i v e  t r a n s f e r  code f o r  a pure ly  molecular 

atmosphere. These values  are l i s t e d  i n  T a b l e  2.11.  

In  the  modified D-S method, t he  e f f e c t i v e  Rayleigh o p t i c a l  th ickness ,  

i s  obtained by consider ing a Rayleigh atmosphere with the  o p t i c a l  th ick-  
d D S  ' 
n e s s  equal t o  t h e t o t a l  o p t i c a l  th ickness  T ( i - e . ,  molecular p lus  p a r t i c u l a t e ) .  

In t h e  M-G method, t h e  e f f e c t i v e  Rayleigh o p t i c a l  t h i ckness ,  dMG, i s  obtained 

by consider ing a Rayleigh atmosphere with j u s t  t he  Rayleigh o p t i c a l  th ickness .  

Since the  e f f e c t i v e  Rayleigh o p t i c a l  th ickness  d ,  f o r  bo th  methods is  always 

l a r g e r  than T, and i n  f a c t  t h e  r a t i o  d/T inc reases  wi th  increas ing  T, w e  can 

conclude t h a t  (dDs - T 1 > dMG, and thus  the  modified D-S method provides  for  

m r e  molecular s c a t t e r i n g  than t h a t  of McPeters-Green. 

be m o s t  pronounced f o r  l a r g e r  values  of T 

t h a t  the  invers ion  of t hese  da t a  sets w i l l  provide the  m o s t  c r i t i c a l  compara- 

P 

This  d i f f e rence  w i l l  

(as w e l l  as l a r g e r  values  of 7: M SO 
P 

t i v e  t e s t  of these  two methods. 

W e  have re - inver ted  our  16  da ta  sets,  using both Eqs. ( 1 2 )  and ( 1 4 )  

p lus  the  d a t a  from T a b l e  2 .10 .  (There w a s  obviously no need t o  repea t  t h e  

invers ion  of t h e  s i n g l e  s c a t t e r i n g  da ta  s e t s . )  These r e s u l t s  a r e  presented 

i n  T a b l e  2 .12 .  

The r e s u l t s  of these new invers ions  a r e ,  i n  a l l  ca ses ,  more accura te  than 

the  r e s u l t s  presented i n  T a b l e  2 .10 .  Also,  one n o t i c e s  t h a t  whereas t h e  M-G 

method y i e l d s  somewhat more accurate  r e s u l t s  than t h e  s i n g l e  s c a t t e r i n g  approxi- 

mation ( c . f .  

much more accura te .  The McPeters-Green method does n o t  seem t o  provide for  

s u f f i c i e n t  molecular s c a t t e r i n g .  

T a b l e  2 .10  and Table 2 . 1 2 ) ,  t h e  modified D-S method t u r n s  out  to be 

When the  modified D-S r e s u l t s  a r e  examined, w e  see t h a t  the  l a r g e s t  
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TABLE 2.11: E f fec t ive  O p t i c a l  Thicknesses Used  i n  the M o d i f i e d  Deirrnendjian- 

T 

Sekera , and McPeters-Green Inversions 

4, A 

60° 

0.25 0.315 

0 - 0  0.262 

0.3 

0.25 0.298 

30 0 .o 0.420 

60° 0 .o 0.437 

0.25 0.493 

60 0.0 0.642 

0.25 0.721 

d D S  - T p  

0.155 

d~~ 

0.2 30° I 0.0 I 0.255 0.114 

0.144 0.215 

0.162 
~ 

0.116 

0.198 0.133 
~~ 

0.255 0.2 0.1 0.320 

0.25 I 0.512 1-- ~ 

0.412 I 0.315 

0.262 0.337 

0.393 0 298 

0.114 0.3 30° I 0.0 I 0.420 0.220 

I 0.25 1 0.512 0.144 

0.116 

0.312 

0.237 60° I 0.0 1 0.437 

0.293 

0.409 

0.133 

0.255 

0.315 

0.262 

0.536 

0.442 

0.521 0.298 
I 

DS - Modified Deirmendjian-Sekera method 
MG - McPeters-Green method 
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TABLE 2.12: R e t r i e v e d  S i z e  D i s t r i b u t i o n  P a r a m e t e r s  a and b U s i n g  M o d i f i e d  
D e i r m e n d j i a n - S e k e r a  and McPeters-Green A p p r o x i m a t i o n  

' 0  

30° 

60° 

a b (urn-') r, = 2 / b  % E r r o .  

Modified Modified Modified Modified 
T T A D-S M-G D-S M-G D-S M-G D-S M P 

0.1 0.1 0.0 44613 49693 9.985 10.121 0.2003 0.1976 -0.15 

0.25 42489 51349 9.925 10.164 0.2015 0.1968 -0.75 

0.2 0 . 1  0.0 44086 52289 9.970 10.187 0.2006 0.1963 -0.30 

0.25 42297 54686 9.920 10.247 0.2016 0.1952 -0.80 

0.1 0.2 0.0 92147 105720 10.020 10.195 0.1996 0.1962 0.20 

0.25 87803 10945 9.960 10.241 0.2008 0.1953 -0.40 

0.2 0.2 0.0 91100 111220 10.006 10.261 0.1999 0.1949 0.06 

0.25 87257 116240 9.953 10.319 0.2009 0.1938 -0.47 

0 .1  0.1 0.0 48242 56373 10.083 10.298 0.1984 0.1942 0.83 

0.25 47123 58534 10.052 10.352 0.1990 0.1932 0.52 

K 

1 0.2 0 . 1  
a 

i 
t 0.1  0.2 

0.2 0.2 

i n  b 

0.0 48730 62486 10.098 10.444 0.1981 0.1915 0.98 

0.25 47946 65791 10.078 10.519 0.1985 0.1901 0 .78  

0.0 106460 129550 10.205 10.480 0.1960 0.1908 2.05 

0.25 104040 134800 10.174 10.538 0.1966 0.1898 1.74 

0.0 107170 142980 10.215 10.622 0.1958 0.1883 2.15 

0.25 105360 150520 10.193 10.698 0.1962 0.1870 1.93 

M-G 

1 .21  

1.64 

1.87 

2.47 

1.95 

2.41 

2 .61  

3.19 

2.98 

4.44 

5.19 

4.80 

5.38 

6.22 

6.98 
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0 e r r o r s  occur f o r  $ s  = 60 

be l ieve  t h a t  these  d iscrepancies  a r e  due l a r g e l y  t o  the  neglec t  of p a r t i c u -  

l a t e  mul t ip le  s c a t t e r i n g ,  which w i l l  c l e a r l y  be l a r g e s t  under such circum- 

s t ances .  For a l l  o t h e r  d a t a  sets, the  e r r o r s  i n  t h e  r e t r i eved  value of b 

are a l l  under 1%. Thus, we f e e l  t h a t  use o f  t he  modified D-S method w i l l  

l e ad  t o  a m o r e  accura te  determination of the  mode r ad ius  o f  t h e  aerosol s i z e  

d i s t r i b u t i o n .  S imi l a r ly ,  although the  e r r o r s  i n  t h e  r e t r i e v e d  values  of  a 

are l a r g e r  than t h e  errors i n  b ,  they never the less  represent  a s i g n i f i c a n t  

' improvement over the l a r g e  e r r o r s  i n  t h e  o r i g i n a l  r e t r i e v a l  ( T a b l e  2.10). We 

and Tp = 0 . 2 ,  namely, about 2% e r r o r  i n  b. W e  

t he re fo re  feel conf ident  i n  recommending t h i s  method f o r  more accura te  

r e t r i e v a l s  of ae roso l  s i z e  distribution from s o l a r  aureole data. 

(v) Concluding Remarks 

So f a r ,  t h e  s imulated almucantar radiance da t a  t h a t  w e  have s tud ied  

have been generated by only one set  of aerosol  parameters f o r  r e f r a c t i v e  

index and s i z e  d i s t r i b u t i o n .  A l s o ,  ozone absorpt ion and experimental 

e r r o r s  have been ignored. U n t i l  a l a r g e r  da ta  base has been examined, we 

a r e  unable t o  draw any absolu te  conclusions.  However, the  r e s u l t s  pre-  

sen ted  so f a r  g ive  us considerable  confidence i n  s t a t i n g  t h a t  use  of  t h e  

modified Deirmendjian-Sekera technique l eads  t o  more accurate  invers ion  of  

aureole  d a t a  than performed by using the  s i n g l e  s c a t t e r i n g  approximation 

o r  t he  M-G approximation. This holds  t r u e  e spec ia l ly  f o r  l a r g e r  o p t i c a l  

thicknesses .  Further  study needs t o  be performed i n  extending the  modified 

D-S method f o r  l a r g e r  o p t i c a l  depths and more r e a l i s t i c  experimental s i t u -  

a t i o n s .  
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2.5 EXPERIMENTAL VALIDATION OF THE SOLAR AUREOLE TECHNIQUE 

I n  t h i s  s e c t i o n ,  w e  intercompare t h e  r e t r i e v e d  r e s u l t s  f o r  t h e  columnar 

s i z e  d i s t r i b u t i o n  of ae roso l s  obtained by i n v e r t i n g  t h e  m u l t i s p e c t r a l  

(400, 500, and 600 nm), mult iangle  ( 3 0  t o  15O) measurements of almucantar 

radiance made on May 6,  1977, a t  Tucson, Arizona, and t h e  ground t r u t h  

measurements ( R e f .  50,51) obtained by t w o  o p t i c a l  s i z i n g  counters .  In  t h e  

fol lowing sec t ions ,  w e  s h a l l  b r i e f l y  r e c a p i t u l a t e  t h e  inve r s ion  formulations 

for  t h e  SS and M S  approximations, and d i scuss  t h e  r e s u l t s  of r e t r i e v a l s  i n  

t h e  t w o  approximations using d i f f e r e n t  s i z e  d i s t r i b u t i o n  models. It  is shown 

t h a t  s i z e  d i s t r i b u t i o n s  r e t r i e v e d  by using our  MS approximation a r e  more 

accu ra t e  than  those  obtained by t h e  SS approximation by comparing them wi th  

. ground t r u t h  measurements of  s i z e  d i s t r i b u t i o n s ,  i n  o rde r  t o  v a l i d a t e  t h a t  

t h e  solar technique i s  a viable, simple and accu ra t e  method f o r  determining the 

columnar a e r o s o l  s i z e  d i s t r i b u t i o n .  

I n  Sec t ion  2.3,  w e  compared t h e  r e l a t i v e  con t r ibu t ions  of  MS and SS 

t o  t h e  solar aureole  almucantar radiance (SAAR)  distribution--MS values  having 

been generated by a computer code based on our  Gauss-Seidel i t e r a t i v e  

approach t o  t h e  s o l u t i o n  of t h e  r a d i a t i v e  t r a n s f e r  equat ion.  One important 

r e s u l t  t h a t  emerged was t h a t  f o r  s c a t t e r i n g  angles  $J wi th in  loo  from t h e  sun, 

t h e  MS p l u s  t h e  SS con t r ibu t ions  t o  alrnucantar radiance exceed the  SS 

con t r ibu t ions  by a s m a l l  cons tan t  f a c t o r .  It  was a l s o  shown t h a t  under 

o rd ina ry  sky condi t ions ,  t he  M S  con t r ibu t ion  due t o  molecules i s  much g r e a t e r  

than that due t o  aerosols, so t h a t  one can use an MS approximation t o  t h e  

r a d i a t i v e  t r a n s f e r  by including con t r ibu t ions  due t o  SS by ae roso l s  and 

molecules and M S  by molecules alone: while  ignoring MS events  i n  which 

ae roso l s  are involved. 

2 . 5 . 1  SS and M S  Approximations 

(i) 

by : 

In the SS Approximation. The SS radiance Lss i n  t h e  almucantar i s  given T 

- 
Lss - 
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where 

and 

-3  -1 where q ( r , y )  i s  t h e  ae roso l  a l t i t u d e - s i z e  d i s t r i b u t i o n  (an pm 1; 
y is  the  a l t i t u d e  (Ian); N- i s  t h e  columnar s i z e  d i s t r i b u t i o n  

Thus, w e  can o b t a i n  t h e  d a t a  f o r  the columnar p a r t i c u l a t e  s c a t t e r i n g  

func t ion  F ($1 i n  t h e  SS approximation by r ep lac ing  L. i n  Eq. (1) 
PC ss 

by t h e  a c t u a l  radiance measurements, L ( $ , A ) ,  rearranging:  

(ii) 

f o r  a nonzero ground albedo A is  taken i n t o  account i n  t h e  t o t a l  almucantar 

radiance f i e l d  by replacing (F MC + F PC 1 i n  E q .  (69) by an e f f e c t i v e  

columnar t o t a l  s c a t t e r i n g  funct ion F ECT ($), such t h a t  

In the MS Approximation. In  our  M S  approximation, t h e  MS e f f e c t  

where 
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In  ou r  M S  approximation, p a r t i c u l a t e  s c a t t e r i n g  is  t r e a t e d  as a 

and T~ TMS small p e r t u r b a t i o n  over  t h e  molecular  s c a t t e r i n g .  Here, 

are t h e  c o r r e c t i o n  ( o p t i c a l  depth)  t e r m s  due t o  MS and s u r f a c e  albedo 

A,  r e s p e c t i v e l y ;  T is t h e  o p t i c a l  depth due t o  p a r t i c u l a t e  s c a t t e r i n g ,  PS 
a s  opposed t o  p a r t i c u l a t e  absorp t ion ;  T 

(averaged) ; and p = cos 4. 

- 
P 

PS P 
- - FpC; w ,  t h e  SS albedo 

The express ions  f o r  T and T are given as fo l lows  (Ref. 27) MS A 

2 1/4 r (= T )= 0.02 T + 1 . 2  ~ ~ ~ / p  Ms 1 ss 

T = A T ( T  ,p 1/11 - A T (T 1) 
A 2 ss 0 3 ss 

(77) 

(78) 

T = U T = T  + T  (79) ss M PS 

T~ = 1.34 T~~ po{l .O + 0.22 (rss/po) 2, (80) 

3 
ss T = 0.9 T - 0.92 T 2  + 0.54 T 3 ss ss 

Equat ions(69)  and ( 7 3 ) d i f f e r  i n  only one po in t :  t h e  M S  con t r ibu t ions  

due t o  molecules. Note t h a t  Eq. ( 5 )  i s  s t r u c t u r a l l y  i d e n t i c a l  t o  

Eq. (69) ,  and can the re fo re  be rearranged t o  ob ta in  t h e  columnar ae roso l  

s i z e  d i s t r i b u t i o n N  ( r )  [cm pm 1,  i n  t h e  same manner a s  i n  t h e  SS 

approximation. 

-2 -1 
C 

In  t h e  M S  approximation, w e  can o b t a i n  t h e  experimental  da t a  

f o r  t he  columnar s c a t t e r i n g  func t ion  by r ep lac ing  L i n  

Eq. (73) by t h e  experimental  L d a t a  and rear ranging  t o  ge t  
MS 

MS obta ined  a s  
PC I t  is from t h e  exDerimenta1 d a t a  f o r  Fss o r  F 

PC 
a func t ion  of s c a t t e r i n g  angle  I) and wavelength A, t h a t  w e  r e t r i e v e  

t h e  columnar s i z e  d i s t r i b u t i o n s  N (r)  i n  t h e  SS and M S  approximations. 

The c o e f f i c i e n t s  i and i were c a l c u l a t e d  using J .  V. Dave's (Ref. 5 2 )  

computer code. The r e t r i e v a l s  a r e  performed using t h e  nonl inear  

l e a s t  squares  (NLLS) method. (The  theo ry  of  NLLS i nve r s ion  method i s  

descr ibed i n  Refs. 53 and 54.) 

C 

1 2 
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In view of the fact that the parameters T and T both involve 

which is usually not known with 
Ms A 

the particulate optical depth, T 

sufficient accuracy, Eq. (12) cannot, in general, be used as it stands. 

Instead, we may define a new function G($) by 

PS 

In the SS approximation, of course, 

ss 
PC F ($1 = G ($1 

whereas in the Ms approximation 

($1 + FPC pM ($1 + rA pM (oo) = G Ms 

Thus, in this approximationr the integral equation we must solve is 

I 

I 

I 

I 

(83 )  

(841 

i 

As well as N 

as unknownsr via their dependence on T 

both TMS and TA must now be considered (at least partially) 

PS 
The N U S  inversion procedure involves assuming an analytical model for 

C 

NC (see below), with a number of adjustable parameters, which are iterated unti: 

a "best fit" to the data is obtained. One consequence of the structure of 

Eq. (86) is that the "scaling parameter" is no longer an overall multiplica- 
tive constant. 

2.5.2 Size Distribution Models for N (r) 
C , 

A number of different analytic size distribution models were used during 

In this paper, however, we will report results the course of this analysis. 

for only one of these. 

both of which are modified gamma distributions (refs. 45, 40) of haze M type: 

This model has two terms (to allow f o r  bimodality), 
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A word needs to 

As indicated above, 
5' be said about the apparently superfluous parameter P 

data were obtained at three different wavelengths, 400, 

500 and 600 nm. 

filter at 400 nm, the calibration of this data set was somewhat uncertain. 

The parameter p5 was defined to be 1.0 for the 500 and 600 nm data, but 

permitted to vary for the 400 nm data. 

Unfortunately, due to a problem with the neutral density 

2.5.3 Retrievals in the SS Approximation 

A total of five sets of results will be presented in this paper: test 

runs s3 (data for all three wavelengths inverted using the SS approximation) 

M 3  (data for all three wavelengths inverted using our M S  approximation,) 

M3A (as for M3, but with the ground albedo treated as a free parameter - P,) I 

I 

I 

S2 (data for 500 and 600 nm only, inverted using the SS approximation) and 

M2 (data for 500 and 600 nm, inverted using our M S  approximation). The S2 and 

M2 runs were an attempt to circumvent the calibration problem at 400 nm; 
however, they also served the purpose of checking to see how the results 

obtained by use of the 2 wavelength data compared with those obtained by the 

use cf the 3 wavelength data. 

In the retrievals presented here, the multiplicative factor for 400 nm 

(p5) was held fixed. 

were not successful. A better approach proved to be to use the best estimate 

available for this parameter, update the parameter in the light of inversion 

results, and rerun the inversion program. Generally it was found that the 

Attempts to vary this parameter along with the others 

data for 400 nm was consistently too high or too low by some factor so FPC 
that the 400 nm scaling factor was updated by this multiplicative factor. 

Because of the slight changes in the model which were necessary to 

account for the differences in scale between the 400 nm, 500 nm and 600 nm data, 

inversions were performed using both the SS and MS approximations. This ensured 

the validity of comparisons between SS and MS retrievals. The retrieved 

parameters and the statistics of the retrievals for the various test runs are 

summarized in Tables 2.13 and 2.14, respectively. 
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(i) Test Runs ( S 3 ,  M3 and M3A) Using Three-Wavelength Data: 

The fits to the F data for 400 nm and 500 nm using the SS PC 
approximation (Run S3) were good (Fig. 2.17). The fits for 600 nm 

(Fig. 2.17) were not good, although the final estimate is a definite 

improvement on the initial estimate. The final estimate is far too 

high at large scattering angles. 

The first of the M S  runs to be discussed is the one with 

albedo fixed at 0.25 (Run M3). The shape of the 400 n m  (Fig. 2.18) 

scattering function is good, although the actual values are consistently 

too high. The multiplicative factor used for  this data was 0.452 and 

the results obtained here suggest that 0.40 would have been a better 

value. 

The fit to the F:: nm data (Fig. 2.18) was not as good 
. as in the SS case (Fig. 2.17), the calculated F values being too low PC 

for most scattering angles. The fit to the 600 nm data (Fig. 2.18), 
on the other hand, is very good and is a marked improvement over 

the SS approximation (Fig. 2.17). 

In the test run M3A, the albedo parameter (p 1 was allowed to 6 
vary, and the multiplicative factor (p 1 for the 400 nm data was 

set at 0.4 on the basis of the results of the M 3 .  The fit to the 

FMS 400 nm data (Fig. 2.19) was very good. 

there was a slight improvement over the run M3 although the calculated 

values at large scattering angles are still too low. For 600 nm 

(Fig. 2.19), there was a definite improvement over the SS case, but 

the fit was not as good as for the case (M3) when the albedo was held 

fixed. When the albedo was allowed to vary the calculated values at 

large scattering angles were much lower than measurements. 

retrieved for the above inversions are given in Table 2 . 1 3 ) ,  and the 

corresponding statistics of the fits to the data, in Table 14. 

parameters for the two MS approximation runs are very similar, but differ 

a little from those for the SS approximation, especially for the first 

mode of the size distribution. 

5 

For 500 nm (Fig. 2.191, 
PC 

The parameters 

The 
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FIGURE 1.17. NLLS fits t o  FpC versus d a t a  f o r  run 5.3. 
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0 

FIGURE 2.18. NLLS f i t s  to FPC versus $ data  f o r  run M3, w i t h  A = 0.25 (fl 
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FIGURE 2.19. NLLS f i t s  t o  F versus !j.~ d a t a  f o r  run M3A. PC 
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The s i g n i f i c a n c e  of t h e  nega t ive  albedo retrieval is  no t  

c l e a r  bu t  t h e  r e s u l t s  from o t h e r  runs i n  which t h e  albedo w a s  

allowed t o  vary sugges t  t h a t  it may n o t  always be possible to  retrieve 

t h e  albedo from t h e  solar aureole measurements. In s t ead ,  it i s  

suggested t h a t  f o r  i nve r s ion  work, the albedo be he ld  f i x e d ,  and s e v e r a l  

d i f f e r e n t  va lues  t r ied t o  determine which g ives  t h e  b e s t  r e s u l t s .  With 

t h e  d a t a  considered here  it w a s  found t h a t  t h e  same r e s u l t s  w e r e  ob ta ined  

when albedos of  0.20 and 0.25 w e r e  used. 

Comparison of t h e  s i z e d i s t r i b u t i o n s  f o r  t h e  SS and MS 

approximations (Fig.  2.20) shows t h a t  they are i d e n t i c a l  , except 

f o r  the r a d i i  range r < 0.2 m, f o r  which it shows t h a t  N C ( r )  

has higher  va lues  f o r  t h e  SS case t h e n  for t h e  MS case. 

d i f f e r e n c e s  f o r  low r a d i i  are due t o  t h e  MS c o r r e c t i o n s  and are 

r e f l e c t e d  i n  t h e  d i f f e r e n c e s  between t h e  parameters f o r  t h e  t w o  

approximations f o r  the f irst  mode. The r e t r i e v e d  s i z e  d i s t r i b u t i o n s  

agree  very wel l  wi th  t h e  ground t r u t h  measurements f o r  May 7, 1977, 

obtained by Whitby and Royco coun te r s ,  as shown i n  Fig.  2 .20 .  

These 

As shown i n  Table 2.13, t he  mode r a d i i  for t h e  t w o  modes are 

very s i m i l a r  f o r  t h e  t h r e e  inve r s ion  runs d i s c u s s e d  above. From 

Table 2.14 it can be seen t h a t  t he  s tandard dev ia t ions  for the  f i t s  

t o  t h e  Fpc da t a  f o r  t h e  SS case  

than  for  t h e  MS case ,  bu t  t h e  only case  i n  which t h i s  is  s t a t i s t i c a l l y  

s i g n i f i c a n t  a t  t h e  90% l e v e l  of confidence is when t h e  o v e r a l l  f i t  for 

t h e  M S  case ( M 3 )  , with t h e  albedo f ixed ,  i s  compared wi th  t h e  SS case.  

(S3) tend t o  be s l i g h t l y  lower 

I n  genera l ,  it seems t h a t  applying t h e  M S  c o r r e c t i o n s  

does r e s u l t  i n  an o v e r a l l  improvement i n  t h e  f i t  to  the F da ta .  

I t  is sometimes a compromise i n  t h a t  a marked improvement f o r  

one wavelength over t h e  SS r e s u l t s  may be accompanied by a poorer 

f i t  a t  another wavelength. 

PC 
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(ii) Test Runs  S2 and M 2  u s i n g  Two-Wavelength Data: 

H e r e ,  da t a  f o r  only 500 nm and 600 nm wavelengths were inve r t ed .  

These invers ions  were done t o  determine whether o r  no t  t he  inc lus ion  

of t he  400 nm d a t a ,  with i t s  c a l i b r a t i o n  problem, w a s  having any e f f e c t  

on the  inversions.  Using t h e  SS approximation i n  Run 52, good f i t s  

t o  t h e  FPC da ta  a t  500 nm (Fig.  2.21) were obtained,  bu t  t h e  c a l c u l a t e d  

values  f o r  600 nm (Fig.  2.21) were too high a t  l a rge  s c a t t e r i n g  angles .  

Using the  MS approximation ' in  Run M2, i n  which an albedo of 0.20 

w a s  used, t he  f i t  t o  t h e  FpC da ta  a t  500 nm (Fig. 2.22) obtained w a s  

good, whereas f o r  600 nm (Fig.  2-22], t h e  ca l cu la t ed  values  w e r e  s t i l l  

too high but  were b e t t e r  than  those f o r  t h e  SS approximation. 

Table 2.13 shows t h a t  t h e  parameters for  the  t es t  runs S2 and 

M2 a r e  e s s e n t i a l l y  the  same bu t  the e r r o r s  are high,  e s p e c i a l l y  for 

and P w h i c h  are m u l t i p l i c a t i v e  s c a l i n g  f a c t o r s .  Comparison w i t h  
p1 3 
S3, M3, and M3A r e s u l t s  shows t h a t  t h e  percentage e r r o r s  are much 

higher  when da ta  f o r  only t w o ,  i n s t ead  of t h r e e ,  wavelengths were 

inve r t ed  simultaneously.  

I t  should be noted t h a t  n e i t h e r  of t h e  invers ions  discussed 

above had reached convergence even a f t e r  20 i t e r a t i o n s .  However, 

d i f f e r e n c e s  between the  var iances  f o r  successive i t e r a t i o n s  were 

cons tan t  a f t e r  t he  10th o r  12 th  i t e r a t i o n ,  and the  percentage e r r o r s  

i n  t h e  parameters d id  not  change a f t e r  t h i s  s t age  e i t h e r ,  so it i s  

un l ike ly  t h a t  convergence would be obtained with more i t e r a t i o n s .  

Probably, the  convergence c r i t e r i a  were too  s t r i n g e n t .  This problem 

has been encountered on o the r  occasions and suggests  t h a t  some improved 

convergence c r i t e r i a  might be requi red ;  work on t h e  so lu t ion  of t h i s  

problem i s  i n  progress .  

The s t a t i s t i c s  f o r  t he  S2 and M2 r e t r i e v a l s  a r e  given i n  Table 

2 .14 .  As i n  the  th ree  wavelength case ,  t he re  i s  no s i g n i f i c a n t  

d i f f e rence  between the  standard dev ia t ion  of  the  r e s i d u a l s  f o r  t he  

SS approximation and t h a t  f o r  the  MS approximation. 

The two s i z e  d i s t r i b u t i o n s  r e t r i e v e d  by the  SS and MS approxima- 

t i o n s  (Fig.  2.20) a r e  almost i d e n t i c a l .  There is  no d i f fe rence  
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between the two size distributions at small radii. 

The size distributions obtained by using only the two wavelength 

data simultaneously are very similar to those obtained using three 

wavelength data, and agree with the ground truth data for May 7, 1977. 

Comparison of the results obtained in the two cases suggests that 

although good results can be obtained by using only two wavelength data, 

the addition of data for another wavelength should result in faster 

convergence and smaller uncertainties in the retrieved parameters. 

2.5.3 Concluding Remarks 

(i) I m p r o v e m e n t  i n  r e t r i e v a l s  b y  u s i n g  simultaneous inversion of 
3-A i n s t ead  of 2-x d a t a .  

The work done using the SS approximation showed that even though 

better fits to the columnar scattering function data were obtained 

by inverting the data for each wavelength individually, as in Ref. 28, 

than by inverting data for the three- or two-wavelengths simultaneously, 

they usually yield slightly different size distributions, one for each 

data set. On the other hand, simultaneous inversion of data for all 

the wavelengths, results in a single size distribution, that which 

gives the best fit to all the data in the least squares sense. 

The use of MS corrections did result in an overall improvement 

C I ) , ~ ) .  in agreement between measurements and final estimates of F 

In some instances, a marked improvement in the agreement between 

measurements and calculations for one wavelength in the 

MS case over that in the SS case was accompanied by a poorer 

fit at another wavelength. This is probably because of the 

different size distributions for each of the wavelengths. 

compromise obtained in the MS case gives a reasonably good fit to 

F 

wavelengths and a bad fit for the third as obtained often in the 

SS case. 

PC 

The 

data for all wavelengths rather than good fits f o r  two 
PC 

The uncertainties in the parameter estimates were not improved 

by the use of MS corrections. The percentage errors in the retrieved 
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parameters w e r e  much t h e  same f o r  a l l  t h e  r e s u l t s  presented  he re ,  

except when d a t a  for on ly  t w o  wavelengths w a s  considered,  i n  which 

case they w e r e  s l i g h t l y  increased.  

Comparison of  t h e  r e s u l t s  ob ta ined  for: hath the t w o -  and 

three-wavelength d a t a  sets,  sugges ts  t h a t  t h e  e x t r a  wavelength 

i n  the  l a t t e r  case does l e a d  t o  more rapici convergence and l o w e r  

uncer ta in ty  i n  t h e  parameters. Fur the r  work, however, i s  needed 

t o  confirm t h i s  r e s u l t .  

(ii) Suitability of the two-term bimodal model for  NC(r). - 

The r e s u l t s  presented here suggest  t h a t  Model f u r  AT (r) i s  a s u i t a b l e  ma 
C 

f o r  represent ing  ae roso l  s i z e , d i s t r i b u t i o n s .  T h e  model gave good f i t s  t o  

da ta  and the  r e t r i e v e d  s i z e  d i s t r i b u t i o n s  agree r a t h e r  w e l l  wi th  the FPC 
the ground t r u t h  data. I t  should be pointed out  t h a t  the  ground t r u t h  

measurements were €or May 7 ,  whereas t h e  r e t r i e v e d  r e s u l t s  were f o r  

May 6 .  

ae roso l  s i z e  d i s t r i b u t i o n  between May 6 and May 7, appears t o  be consis- 

t e n t  with condi t ions of  c l e a r  sky p reva i l i ng  dur ing  those two days.  

Here the  assumption t h a t  t h e r e  w a s  no s i g n i f i c a n t  change i n  the  

(iii) Difficulty in retrieving surface albedo from solar aureole data. 

The poor r e s u l t s  ob ta ined  f o r  t h e  albedo, when it w a s  t r e a t e d  as 

an ad jus t ab le  v a r i a b l e ,  sugges t  t h a t  it may n o t  always be  possible to 

g e t  good e s t ima tes  f o r  t h e  albedo by inve r s ion  of t h e  solar aureole 

da ta .  

could be obtained by t r y i n g  s e v e r a l  d i f f e r e n t  estimates of A ,  and 

s e l e c t i n g  t h e  f i n a l  r e t r i e v e d  A value  which g i v e s  t h e  b e s t  f i t  t o  t h e  

F da t a .  

However, it does appear t h a t  a reasonable  f i x  on t h e  albedo 

PC 

(iv) Validation of the solar aureole method. 
Thus, i n  s p i t e  of t h e  f a c t  t h a t  work s t i l l  needs t o  be done i n  

f u r t h e r  improving the  accuracy of r e t r i e v a l s ,  we have been ab le  t o  
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show t h a t  the  solar aureole  technique is a s imple,  p r a c t i c a l ,  and 

accura te  method f o r  determining atmospheric ae roso l  s i z e  d i s t r i b u t i o n s .  

One concludes,  t h e r e f o r e ,  t h a t  measurements of angular  d i s t r i b u t i o n  of 

forward s c a t t e r e d  (aureole)  r ad ia t ion  - a t  one o r  more wavelengths - 
provide an accu ra t e  means of obtaining the columnar s i z e  d i s t r i b u t i o n s  

of atmospheric ae roso l s .  

ground-based, t h e  columnar s i z e  d i s t r i b u t i o n s  obtained were e s s e n t i a l l y  

those of t ropospher ic  ae roso l s ,  as they c o n s t i t u t e  t he  bulk of 

atmospheric ae roso l s .  

Since t h e  s o l a r  au reo le  measurements were 

(VI Recommendation for using satellite-based solar aureole technique. 

Inasmuch as the  ob jec t ive  of t h i s  work w a s  t o  develop a v i a b l e  
, 

simple and accu ra t e  technique f o r  measuring t h e  average s i z e  d i s t r i -  

but ion of atmospheric ae roso l s  from s o l a r  au reo le  measurements, t h i s  

e f f o r t  w a s  p a r t  of a research program, under NASA suppor t ,  t o  develop 

a s a t e l l i t e - b a s e d  technique f o r  measuring ae roso l  s i z e  d i s t r i b u t i o n s  

and concent ra t ions  from mul t i spec t r a l  measurements of s c a t t e r e d  radiance 

of t he  s u n l i t  atmosphere i n  both the  horizon-viewing o r  downward-viewing 

m d e s ,  with t h e  sun i n  any known pos i t i on  with r e spec t  t o  the  s a t e l l i t e .  

An obvious ques t ion ,  t he re fo re ,  a r i s e s ,  namely, can we use the  forward 

s c a t t e r i n g  technique f o r  s a t e l l i t e -based  measurements of s i z e  d i s t r i -  

bu t ion  of atmospheric ae roso l s  -- espec ia l ly  s t r a t o s p h e r i c  - on a g loba l  

basis? The answer i sdec ided ly  yes.  Forward s c a t t e r e d  l i m b  radiance 

would then be those  t h a t  a r e  made c lose  t o  the  sun during the s a t e l l i t e  

sun r i se  o r  sunse t  events .  I t  should be pointed o u t  t h a t  r e t r i e v a l s  of 

ae roso l  s i z e  d i s t r i b u t i o n  from sca t t e red  radiance can be achieved w i t h  

the  sun i n  any angular  pos i t i on  w i t h  r e spec t  t o  the  s a t e l l i t e  b u t  the  

forward s c a t t e r e d  radiance measurements provide the  most accura te  s i z e  

d i s t r i b u t i o n  r e t r i e v a l s .  

(a) Advantages of sa t e l l i t e -based  s c a t t e r e d  rad iance  technique. 

Following a r e  some of t h e  advantages of t he  s c a t t e r e d  radiance technique: 
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(1) 

continuous o r  i n t e r m i t t e n t  measurements can be made of the  aerosol  

s i z e  d i s t r i b u t i o n  during the e n t i r e  s u n l i t  po r t ion  of the o r b i t ,  

which w i l l  shed information on the temporal behavior of s t r a t o s p h e r i c  

ae roso l s  and t h e i r  sources  and s inks .  However, t h e  most accura te  informatic  

about ae roso l  s i z e  d i s t r i b u t i o n s ,  w e  be l i eve  wou3d be obtained from forward 

scattered (aureole)  limb radiance measurements when the  sun ' s  d i s k  i s  c l o s e  

t o  t h e  horizon. 

N o  r e s t r i c t i o n s  a r e  placed on the  sun ' s  l oca t ion ,  so t h a t  

- 

(.2) Because of the measurements of angular d i s t r i b u t i o n  of t he  

s c a t t e r e d  radiance,  it w i l l  be poss ib l e  t o  make accura te  r e t r i e v a l s  o f  

ae roso l  s i z e  d i s t r i b u t i o n ,  which a r e  p re sen t ly  n o t  ava i l ab le  on a g l o b a l  

hasis. 

( 3 )  I n  a d d i t i o n ,  by making p o l a r i z a t i o n  measurements of 

s c a t t e r e d  radiance,  it should be poss ib l e  t o  r e t r i e v e  the  ae roso l  

r e f r a c t i v e  index, which is  s e n s i t i v e  t o  po la r i za t ion .  

(b) Inversion codes for satellite-based radiance measurements. 

The computer codes needed f o r  i nve r t ing  the  s c a t t e r e d  radiance measure- 

ments have been developed over the  l a s t  s i x  years  under NASA 

support  (Refs.  20 and 2 1 )  f o r  r e t r i e v i n g  p r o f i l e s  of the  s i z e  

d i s t r i b u t i o n ,  concentrat ion,  and t o t a l  loading of aerosols  from 

simulated s a t e l l i t e - b a s e d  mul t i - spec t ra l  s c a t t e r e d  radiance 

measurements. A l s o ,  the  technology f o r  making s c a t t e r e d  radiance 

measurements e x i s t s ,  a s  evidenced by the  highly successfu l  measure- 

ments of t he  d i r e c t  s o l a r  r ad ia t ion  made by the  SAM,  SAM 11, and 

SAGE radiometers during s a t e l l i t e  sunse t / sunr i se  events  (Ref. 2 2 ) .  

The one th ing  t h a t  i s  lacking i s  a s e t  of well-defined, c a l i b r a t e d ,  

m u l t i s p e c t r a l ,  s a t e l l i t e  measurements of s c a t t e r e d  radiance.  

I t  i s ,  t he re fo re ,  s t rongly  recommended t h a t  forward sca t t e red  

( s o l a r  aureole)  mul t i spec t ra l  measurements be performed w i t h  the  

help of  s a t e l l i t e -based  radiometers and photogqaphic cameras t o  

ob ta in  v e r t i c a l  p r o f i l e s  of the  s i z e  d i s t r i b u t i o n ,  i n  addi t ion  t o  

the  concent ra t ion ,  of atmospheric ae roso l s .  
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SECTION 3 

MULTISPECTRAL SOLAR E X T I N C T I O N  MEASUREMENTS TO 
DETERMINE AEROSOL CHARACTERISTICS 

In  a r e c e n t  paper ,  Box and L o  (Ref. 57)  f i r s t  proposed the  u s e  of 

an approximate method f o r  t he  f a s t  r e t r i e v a l  of ae roso l  s i z e  d i s t r i b u -  

t i o n s  from mul t i spec t r a l  o p t i c a l  depth measurements. The method has  

subsequently been used by Russel l  e t  a l .  (Ref. 58) f o r  on-l ine da t a  

a n a l y s i s .  

twofold--one t o  determine the  s e n s i t i v i t y  of the  approximate method t o  

t h e  d i f f e r e n c e s  i n  the  t w o  s e t s  of wavelengths (one used f o r  measure- 

ments, and t h e  o t h e r  for computing the da ta  base of o p t i c a l  depth 

va lues ) ;  and t w o ,  t o  determine the  accuracy of s i z e  d i s t r i b u t i o n  

r e s u l t s  ob ta ined  by t h e  use of the  approximate method by comparing 

The motivation behind the  work repor ted  i n  t h i s  paper w a s  

t he  r e t r i e v a l s  with those obtained by a numerical nonl inear  l e a s t  

squares  (NLLS) method. The development of f a s t  r e t r i e v a l  a lgori thms 

i s  of g r e a t  importance t o  the  e f f i c i e n t  handl ing of l a r g e  q u a n t i t i e s  

of o p t i c a l  depth da t a .  I n  t h i s  paper ,  we d i scuss  the  r e s u l t s  of 

applying the  two r e t r i e v a l  methods--the approximate and the  NLLS--to 

m u l t i s p e c t r a l  ae roso l  o p t i c a l  depth da t a  t o  r e t r i e v e  the  aerosol  

columnar s i z e  d i s t r i b u t i o n .  

(1) Mul t i spec t ra l  s o l a r  ex t inc t ion  m2asurements 

The s o l a r  ex t inc t ion  measurements were made with t h e  he lp  of a 

m u l t i s p e c t r a l  s o l a r  radiometer during the  Universi ty  of Arizona's 

Aerosol and Radiation Experiment (UA-ARE) ,  May 6-19, 1977 (Ref. 51) 

The t o t a l  o p t i c a l  depths  TT(X) were obtained f o r  seven wavelengths 

given i n  S e t  N o .  3 i n  Table 3 .1 ,  by the  Langley p l o t  method f o r  8 days 
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TABLE 3.1. W a v e l e n g t h  F i l t e r  Sets (Nos. 1 ,  2 ,  and 3 )  

Wavelength Wavelengths 

set  no. (urn) 
~~ 

1 0.3 (0.05) 0.8 

2 0.387, 0.501, 0.590, 0.677, 0.849, 1.060, 1.228 

3 0.44, 0.5217, 0.5556, 0.6120, 0.6708, 0.7797, 0.8717 

during May 6-19, 1977. The s c a t t e r i n g  o p t i c a l  depth T ( A )  f o r  t h e  

molecular atmosphere w a s  obtained wi th  the he lp  of tables and su r face  

pressure  measurements; and To ( A ) ,  t h a t  f o r  ozone absorpt ion w a s  

computed by the King and Byrne ( R e f .  49) method. Then t h e  p a r t i c u l a t e  

o p t i c a l  depth T ~ ( X )  can be obtained from t h e  r e l a t i o n  

M 

3 

Eight s e t s  of da t a  f o r  T,(A), shown i n  Table 3.2 wereprovided t o  u s  

by Professor  John Reagan, Universi ty  of Arizona. The aerosol  o p t i c a l  
- 3  

depth T ( A )  i s  r e l a t e d  t o  the  a l t i t u d e - s i z e  d i s t r i b u t i o n  n ( r , z )  [cm 

and the  columnar s i z e  d i s t r i b u t i o n  N ( r )  [cm pm ] by the  following 

r e  l a  t ions 

urn-'] P 
-2  -1 

C 

rm rm 
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I 

where Q i s  t h e  ex t inc t ion  e f f i c i ency  f a c t o r ,  x = 2 m / A  is t h e  s i z e  
EXT 

parameter,  A is t h e  r ad ia t ion  wavelength, r is the  par t ic le  r a d i u s  

(pm), z is  the  a l t i t u d e  ( k m ) ,  Op i s  t h e  p a r t i c u l a t e  volume e x t i n c t i o n  

-1 c o e f f i c i e n t  (km ) a t  a l t i t u d e  z ,  and m is  the complex ae roso l  r e f r a c t i v e  

index. 

Next we s h a l l  d i scuss  the  r e t r i e v a l  of t h e  columnar ae roso l  s i z e  

d i s t r i b u t i o n  N ( r )  from the  seven channel T p ( x )  d a t a ,  by t h e  use of 
C 

the approximate and NLLS .2ethods. 

I i i )  Re t r i eva l  of t he  s i z e  d i s t r i b u t i o n -  from T (1) d a t a  P 

I n  both t h e  r e t r i e v a l  techniques--the approximate and t h e  NLLS-- 

one assumes t h a t  t h e  general  c h a r a c t e r i s t i c s  of t he  atmospheric ae roso l  

s i z e  d i s t r i b u t i o n  can be  represented by an a n a l y t i c  model. Eight  such 

a n a l y t i c  models, t h a t  have o f t e n  appeared i n  l i t e r a t u r e ,  have been 

discussed i n  Ref. 46. 

t he  popular Deirmendjian modified gamma (Haze H )  d i s t r i b u t i o n ,  which 

i s  w r i t t e n  a s  

The a n a l y t i c  model s e l e c t e d  f o r  t h i s  work i s  

with p and p as t h e  two ad ius t ab le  paraR?eters. The mode rad ius  of t he  1 2 

s i z e  d i s t r i b u t i o n  i s  r 

i s  equal t o  p N ( r )  i s  r e l a t ed  t o  T (A) by Ea_. ( 2 ) .  I t  is  assumed 

t h a t  t he  aerosol  r e f r a c t i v e  index i s  m = 1 .5  - i ( 0 )  and remains 

e s e n t i a l l y  cons tan t  f o r  the  near LV,  v i s i b l e  and near  I R  wavelengths being 

considered i n  t h i s  paper.  

= 2/P2 and concentrat ion of p a r t i c l e s  m 

1' c P 

The two r e t r i e v a l  methods and t h e i r  r e s u l t s  a r e  b r i e f l y  descr ibed 

a s  follows. 
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A. Approximate Method. The approximate method of Box and Lo i s  

e s s e n t i a l l y  a table look-up method, with a d i f f e rence .  The table is  

cons t ruc ted  by c a l c u l a t i n g  T a t  each s e l e c t e d  wavelength, and then 

approximating t h i s  d a t a  se t  with a power f i t ,  i . e . ,  

P 

X = ~ p m  
0 ( 4 )  

is  merely a s c a l i n g  parameter,  which w e  se t  t o  un i ty ,  and then a l l o w  

t o  vary over  a s u i t a b l e  range of values.  Thus a = a(p,) , f3 = B(p2) . 
p1 

p2 

A d i f f e r e n t  t a b l e  i s  produced f o r  each r e f r a c t i v e  index of i n t e r e s t .  

( N o t e  that w e  could a l s o  have used an exponent ia l  funct ion i n  p lace  of 

the power l a w  of Eq. ( 4 1 ,  b u t  have chosen the power l a w  form because 

of i t s  un ive r sa l  acceptance.)  Note t h a t ,  s i n c e  we only e x t r a c t  t w o  

parameters from t h e  d a t a ,  w e  a r e  only able t o  i n f e r  two parameters of 

t h e  s i z e  d i s t r i b u t i o n .  Thus, w e  have s e l e c t e d  a two-parameter model-- 

Haze H ( R e f .  5 7 ) .  

When a set  of experimental  da t a  i s  obta ined ,  it is approximated 

by the  p o w e r  law form, Eq. ( 4 ) ,  and the  experimental  a and e values  

obtained.  

ex t r ac t ed .  

i t s  t a b l e .  

( R e f .  57). 

From the  t abu la t ed  values  of a, t h e  optimum value of p2 is  

Next the  value of 6 f o r  t h a t  value of p2 i s  obtained from 

F i n a l l y ,  t h e  value of p1 is  obtained from the  r e l a t i o n  

p1 = B(experiment1 / B(p (5) 2 

In  Fig.3.L w e  p l o t  a vs p f o r  t he  t h r e e  wavelength sets of 2 

Table3.1,and f o r  a r e f r a c t i v e  index of m = 1.5  - iO.0. Such graphs 
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FIG. 3 . 1 .  Plots of a a s  a function of p 2  for the three wavelength se t s .  

are suitable for hand analysis: for automatic analysis (e.g., Ref. 581, 

a tabular form is required. In this plot, set no. 1 corresponds to 

Box and Lo's original wavelength set, set no. 2 corresponds to the 

wavelengths used in the work of Russell et al(Ref. 58) and set no. 3 

corresponds to the wavelengths used in UA-ARE experiment (see Table 3.1). 

B. Nonlinear Least Squares (NLLS) Method. The nonlinear least squares 

(NLLS) method assumes a suitable analytic form for N (r), with a number 
C 

of undetermined parameters, p, and attempts to find that set of parameters 

which minimizes the sum of squares of the differences between the observed 

and calculated T values. In order to compare these results with those 
P 
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from the approximate method, we have assumed the functional form of 

Eq. (3), with p1 and p as the parameters to be determined. Because T 

is linear in p leaving p the only nonlinear parameter, it is always 
2 P 

1’ 2 

possible to find a global minimum. 

Since the NLLS method is iterative, it is necessary to start with 

an initial guess for the unknown parameters: the NLLS code then provides 

successively better estimates of the optimum parameter set, along with 

their uncertainties and correlation coefficient (see Ref. 54). One 

suitable source of the initial guess is, of course, the approximate 

method of Box and Lo. However, with the simple functional form of 

Eq. ( 3 )  virtually any set of initial parameters will suffice: for a 

more complicated function, this may not be the case. 

In this paper, we analyze 8 data sets taken in Tucson, Arizona in 

May of 1977. These data sets are presented in Table3.2, along with the 

resulting c1 and B values, and the correlation coefficient, C, (Table 3.3) 

which indicates the accuracy of the power-law fit. These data sets were 

analyzed using the tables generated by using the 3 wavelength sets 

of Table 3.1 (see Fig. 3-11, as well as using our NLLS code. The results 

are presented in Table 3.4. 

If we assume that the answers corresponding to wavelength set 3 

are “correct”, then we see that the answers obtained from the other 

two wavelength sets show systematic errors. This, of course, is just 

what would be expected from an examination of Fig. 3.1, and confirms our 

suggestion that the approximate method can only return reliable results 
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if t h e  ana lys i s  table is constructed using e s s e n t i a l l y  t h e  same wave- 

lengths  as the  ones used f o r  measurements. 

W e  now compare the r e s u l t s  of the approximate method, using 

wavelength set 3 ,  with  t h e  r e s u l t s  from t h e  NUS method. For d a t a  

sets I, 11, VI, VI1 and VI11 t he  agreement i s  good t o  very good. (Note 

t h a t  w e  have decided not  t o  quote t h e  u n c e r t a i n t i e s  i n  p a s  given by 

t h e  approximate method, as these u n c e r t a i n t i e s  compound r ap id ly ,  as 

d iscussed  i n  Ref. 57.)  For da t a  sets I11 and IV t h e  agreement is 

reasonable ,  while f o r  d a t a  se t  V the agreement is only f a i r .  

1 

In order  t o  understand the reason f o r  t h e  d iscrepancies  w e  r e t u r n  

t o  T a b l e  3 . 3 ,  and t ake  note  of  t he  c o r r e l a t i o n  c o e f f i c i e n t  C f o r  t h e  f i t s .  

For d a t a  sets I11 and V,  t hese  values  are quite low, ind ica t ing  t h a t  a 

power l a w  f i t  t o  t h e  da t a  w a s  not  very s a t i s f a c t o r y .  For da t a  se t  IV, 

although the  c o r r e l a t i o n  c o e f f i c i e n t  C is  q u i t e  h igh ,  t he  unce r t a in ty  

i n  t h e  value of i s  somewhat l a r g e r  than usua l  T h i s  i s  r e f l e c t e d  i n  

the  l a r g e  uncer ta in ty  i n  p a s  produced by both methods. 2 

I t  should be noted t h a t  i n R e f .  59 p l o t s  are shown of columnar 

s i z e  d i s t r i b u t i o n s  ( i . e . ,  mc/d log  r )  r e t r i e v a l s  f o r  3 of the  8 s e t s ,  

namely, s e t s  I, V ,  and VI11 f o r  May 6, 15 and 18, 1977 ,  respec t ive ly .  

The plots  appear to  be bimodal, with the  f i r s t  mode f o r  s e t s  I and V 

having p values  of about 8.0 and 2.5,  r e spec t ive ly .  The s e t  VI11 p l o t  

i s  p r a c t i c a l l y  a s t r a i g h t  l i n e  with a s l i g h t  curva ture  and an in f l ex ion  

p o i n t ,  i nd ica t ing  the  presence of a mode. 

and those of K i n g l e t  al .shows t h a t  f o r  set  I t h e  p 

wel l .  

2 

Comparison between our r e s u l t s  

values  agree reasonably 2 

For set 11, t he  p2 values  d i f f e r  by a f a c t o r  of 4 ,  our value being 
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the h igher  one. 

poss ib l e .  One explanat ion f o r  t hese  d iscrepancies  is t h a t  t he  approximate 

and t h e  NLLS methods depend on the choice of an a n a l y t i c a l  model, such as 

Haze H ,  whereas King e t  al .(Ref.  59) employ a form of the cons t ra ined  l i n e a r  

i nve r s ion  approach proposed by P h i l l i p s  (Ref. 60) and Twomey ( R e f .  61) .  

Discrepancies  a r i s i n g  due t o  the  use of d i f f e r e n t  invers ion  approaches 

do no t  d e t r a c t  from the i n t e n t  and the  conclusions of t h i s  paper.  

Information about the R e f .  59 r e s u l t s  are included here  f o r  t he  sake of 

completeness. 

For s e t  111, simular  comparison of  t h e  p2 values  i s  no t  

( iv )  Conclusions 

The r e s u l t s  of t h i s  ana lys i s  make it c l e a r  t h a t  t he  r e s u l t s  of 

t h e  approximate method can only b e  considered r e l i a b l e  i f  t he  wavelengths 

used t o  cons t ruc t  t he  a n a l y s i s  t a b l e  a r e  the  same a s  ( o r  a t  l e a s t  close t o )  

t he  wavelengths a t  which the  measurements a r e  made. As the  computational 

e f f o r t  t o  cons t ruc t  such a t a b l e  i s  q u i t e  small  using a modern computer, 

t h i s  should not  prove an impediment t o  the  use of t h e  approximate method. 

When w e  compare t h e  r e s u l t s  of t h e  approximate method, using w a v e -  

length set  3 ( t h e  "cor rec t"  set)  with those from the  NLLS method, we 

f i n d  t h a t ,  i n  genera l ,  t he  two show good agreement. However, when the 

c o r r e l a t i o n  c o e f f i c i e n t  of the  power-law f i t  t o  the  d a t a  drops,  or  t h e  

unce r t a in ty  i n  the  computed value of c( r i s e s ,  we usua l ly  note a 

discrepancy between these  two r e s u l t s .  This is  not a l t o g e t h e r  s u r p r i s i n g ,  

a s  i t  i n d i c a t e s  t h a t  t he  Haze H model is almost c e r t a i n l y  not  an accu ra t e  

desc r ip t ion  of t h e  t r u e  ae roso l  s i z e  d i s t r i b u t i o n .  
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Overall then ,  we may conclude t h a t  i f  an appropr ia te  wavelength set  

i s  used t o  genera te  the  ana lys i s  t a b l e ,  t he  approximate method i s  

capable o f  producing reasonably accura te  s i z e  d i s t r i b u t i o n  r e t r i e v a l s  

(mode r ad ius  t o  wi th in  10% t o  15%, f o r  example), a t  l e a s t  i n  those  

cases where t h e  a c t u a l  d i s t r i b u t i o n  is  approximately of  t he  Haze H 

form. An abnormally low value f o r  t h e  c o r r e l a t i o n  c o e f f i c i e n t  of t h e  

power l a w  f i t  t o  t h e  da t a ,  o r  an abnormally l a r g e  uncer ta in ty  i n  t h e  . 

experimental  value of  a (or B ) ,  are probably good i n d i c a t o r s  of cases 

where t h i s  model is not  s u i t a b l e .  
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SECTION 4 

FORWARD SCATTERING CORRECTIONS TO AEROSOL EXTINCTION MEASUREMENTS 

4.1 FORWARD SCATTERING CORRECTIONS TO TRANSMISSOMETRY MEASUREMENTS 
OF EXTINCTION IN POLYDISPERSE AEROSOLS 

In Ref. 62 results were presented of a parametric study of the 

forwardscattering correction factor R and the complementary error factor 

E for monodispersions. In this section the results of a similar study 

carried out for spherical polydispersions of size distribution 

n(r) [~rn-~lm-~], r being the radius in um, will be presented. For the 

sake of clarity, only the results obtained with the use of simple unimodal 

size distributions of the modified Gamma type, such as Deirmendjian 

models (Ref. 40) Haze M, Haze H and Cloud C3 (referred to as Haze C in 

this section), are presented here. Results for other real size distributions 

can easily be obtained in a similar manner. The behavior of both correction 

and error factors, i.e., R and E, averaged over each of the three size 

distributions, will be discussed here as functions of each of the following 

parameters: the mode radius r , the polydispersity or the spread of the 

size distribution, and the real (m') and imaginary (m") parts of the complex 

refractive index m = m' - im". The computations have been carried out 

with both the exact Mie theory solutions in explicity closed form and the 

Rayleigh diffraction theory approximation, as explained in Ref. 62. The 

results of such a study are extremely useful in obtaining the optimum 

experimental design parameters for the measurement of extinction 

coefficients in particulate media (Ref. 63). 

m 

(i) The Transmission Law (Bouguer's Law) 

The transmission law €or an electromagnetic plane wave passing 

through a homogeneous polydisperse aerosol medium (Fig. 4.1) is given 
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by Bouguer's Law, namely 

-T (A) I(A) = I , (A)  e 

where 

and 

As in Ref:58, for the sake of clarity, the molecular contributions to 

Bext 

distribution n(r), cm pm , the coefficients are defined by 

will be ignored here. Then for polydisperse aerosols of size 

-3 -1 

r2 2 6 .  (A) = 1 7Tr Q.(x,m) n(r) dr, j = ext, scat and abs (4 )  
3 r- 3 

I 

All the quantities in Eq. (4) are the same as defined in Ref. 62, except 

that the factor N (r) for monodisperse particles has been replaced here 
P 

by the operator Ir2 n(r)dr, where r 
r 

of radii. Aerosol size distributions are discussed in a later section. 

and r 1 2 are lower and upper limits 
1 

(ii) Forward Scattering Corrections 

A. Exact Mie Theory Formulation 

Because of the fact that forwardscattered light invariably 

enters the detector view cone, Bouguer's law, as defined in Eq. (11, 

cannot be used to obtain the true optical depth T in a transmission 

experiment. But instead, one obtains the apparent optical depth T '  

related to the apparent volume extinction ( B '  ) and scattering 

(B'scat 

ext 

) coefficients, which are distinguished from the true quantities 

is clearly not affected by the Babs respectively; here, scat Bext and B '  
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forwardscat ter ing.  Thus, 

" X t  
+ BAS (apparent)  - - 

%cat  (5) 

The M i e  e f f i c i e n c y  f a c t o r  Q i s  based on t h e  t o t a l  amount s c a t  

of l i g h t  l o s t  f r o m  t h e  beam by s c a t t e r i n g  by a p a r t i c l e  i n  a l l  d i r e c t i o n s ;  

and Q '  

except within a cone of half-angle  8 i n  t h e  forward d i r e c t i o n ,  so t h a t  t h e i r  

on t h e  amount of l i g h t  l o s t  by s c a t t e r i n g  i n  a l l  d i r e c t i o n s  s c a t '  

d i f f e r e n c e  i s  given by 

(il + i ) s i n  B'de' 1 - - - - 
Qext  QLxt Qscat QLcat 2 2 

From Eqs. (3) and (5) I one ob ta ins  

- 1 -  - - 
'ext Bext 'scat '.kat 

IT J12 1 2 
r n ( r )  (Qext 

I 

Qext d r  

where E (and R) a r e  def ined i n  Eqs. (10) and (9) of Ref. 62 .  

Then a co r rec t ion  f a c t o r  and an e r r o r  f a c t o r  E, averaged over t he  

p a r t i c l e  s i z e  d i s t r i b u t i o n  between t h e  l i m i t s  r and r may be def ined 

by 

1 2 '  
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where 

n(r) I (x,m,e)dr TF - 
E =  

Bextk' 

Note that 6 = 6 (n(r) ,m,8). 

B. The Approximate Rayleigh Diffraction Formulation 

From Eq. (12) in Ref. 62 and Eqs. ( 6 )  and (8), the Rayleigh 

diffraction approximation to the forwardscattering correction for a 

polydispersion is given by 

ext P 

0 

where J and J are Bessel functions of the first kind and of orders zero 
0 1 

and one, respectively. 

(iii) Corrected Transmission Law 

By inserting the correction factor into the transmission 

equation, one can account for both the direct and forwardscattered radiation. 

Thus 

-TI ( A )  7 ( X )  = To(X)e 
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where 

T' (A) = dR 6' j: ext 

2 
= 11 dL r2 dr rr Q(x,m) n(r)R(x,8) 

rl 

(12) 

From the discussion in Ref. 62,it is clear that for parallel beam trans- 

mission systems with 

T' ( A )  = TL 

where 

h 1 

an open-detector, the half-cone angle 8 = 8 (21, so that 

R(X,L) = - dR R(x,8(R)) 

(13) 

And for a lens-pinhole system 8 = constant, so that R = R(x,8), independent 

of R. 

two detector systems, see Ref. 62. 

For the discussion of the experimental design considerations of the 

(iv) Aerosol Size Distributions 

Several analytic representations of aerosol size distributions appear 

and E is investigated in the literature. In this paper, the behavior of 

as a function of the mode radius r the spread of the size distribution 

and the complex refractive index m( = m' - im"), the upper and lower limits 

of radii being 10 and 20 pm. For the sake of simplicity, three of the 

Deirmendjian models (Ref. 461, namely, Haze M, Haze H and Cloud C3 (referred 

to here as Haze C), were selected for representing different polydis- 

persities of aerosol size distribution n(r). Since r is varied between 

m' 

-2 

m 
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-1 t h e  r a d i i  l i m i t s  10 and 10 u m ,  t h e  t h r e e  models are  used here  i n  a 

more genera l  way than w a s  t h e i r  o r i g i n a l  i n t e n t .  I t  i s  i n  t h a t  sense t h a t  

model Cloud C3 i s  r e f e r r e d  t o  as Haze C. The limits of i n t e g r a t i o n  over  

r are 10 and 2 0  pm. -2 

The express ions  f o r  t h e  n ( r )  models and t h e i r  corresponding mode 

radi i  r are given as fol lows:  m 

, r = 4/b -& (a) Haze M: n ( r )  = r e m 

(b) Haze H: 

(c) Haze C: 

2 -br n ( r )  = r e , r = 2/b 
m 

Note t h a t  any normalizat ion o r  scale f a c t o r  i n  t h e  s i z e  d i s t r i b u t i o n  w i l l  

cance l  when E and are evaluated.  Thus, although E and do depend on t h e  

shape of t h e  s i z e  d i s t r i b u t i o n ,  they  do not  depend on t h e  t o t a l  number of  

p a r t i c l e s .  

The d i f f e r e n c e  i n  t h e  shape of these  th ree  models i s  i l l u s t r a t e d  i n  

- 3  -1 Fig. 4.1, where each has r = 1.0 urn and n(rm) = 1.0 cm Dm . For want m 

of a b e t t e r  terminology, t he  "spread" of  a s i z e  d i s t r i b u t i o n  w i l l  a l s o  

be r e f e r r e d  t o  as "polydispers i ty"  of t h e  s i z e  d i s t r i b u t i o n  i n  t h i s  

paper .  For example, Haze H w i l l  be r e f e r r e d  t o  a s  more "polydisperse"  

than Haze C ,  and i n  t h e  same vein it w i l l  be s t a t e d  t h a t  Haze M has a 

higher  "po lyd i spe r s i ty"  than Haze H .  I t  should be noted here  t h a t  t he re  

e x i s t  o t h e r  terms i n  t h e  theory o f  d i s t r i b u t i o n  func t ions  t o  express  t h e  

same q u a n t i t y .  
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Perhaps the major disadvantage of the Deirmendjian models is that 

their fall-off behavior for large radii is too sharp: 

measured distributions show a power law behavior, at least in the optically 

active region. For this reason, we have also considered a power law dis- 

tribution, given by 

many experimentally 

-V n(r) = r I 10-$m<_ r 5 15 pm 

and allowed v to vary between 2 and 4 .  

either mode radius or polydispersity for a power law haze, only slope, v. 

Note that one cannot talk about 

(v) Computational Considerations 

A parametric study of the correction factor and the corresponding 

error factor E was carried out as functions of different 
of r , 8, m' and m", whose values occur within the ranges 0.1 < r 

< 101.lm, Oo < 8 < loo, 1 . 3 3  < m' < 1.65 and 0.0 < m" < 0.1. 

combinations 

m m 

The computations of (and E) in Eq. (8) (and Eq. ( $ 1 )  are made by 

using the closed form relations given in R e f .  58 for I(x,m,8). The 

computations of % for the approximate method are made by using Eq. (10). 

(vi) Discussions and Conclusions 

The parametric study of was carried out as a function of many 

different combinations of r , 8, m' and m", but for the sake of clarity 

the results of only a few judiciously selected combinations are presented 

in the following sub-sections. 

m 

A s  the Deirmendjian models are so different 

from the power law model, we shall treat each separately, starting with 

the Deirmendjian models. 
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A .  Resu l t s  f o r  R and E as func t ions  of r and m m -  

F igu res  4 . 2  ( a ,  b ,  and c )  and 4.3 ( a ,  b ,  and c )  i l l u s t r a t e  t h e  

behavior o f  

t o  10.0 pm, f o r  t h r e e  d i f f e r e n t  half-cone angles (lo, 4 O ,  and 10') and 

f i v e  d i f f e r e n t  r e f r a c t i v e  ind ices  (1.33, 1.65, 1.55 - i ( . O 5 ) ,  1.55 - 

i ( O . l ) ) ,  f o r  each of t h e  t h r e e  models: (a )  Haze M ,  (b )  Haze H ,  and 

(c )  Haze C,  r e s p e c t i v e l y .  The computations w e r e  made f o r  A = 0.55 pm. 

For Haze M (Fig.  4 . 2 a ) ,  t h e  va lues  of  E r a p i d l y  decrease  as r 

and E r e s p e c t i v e l y ,  as  func t ions  of  r i n  t h e  range 0.1 m 

m 

increases from 0.1 pm t o  about 1 pm and then  tend  t o  l e v e l  o f f  t o  a 

n e a r l y  c o n s t a n t  va lue .  The percentage e r r o r  (Fig.  4.3a) f o r  Haze M shows 

t h a t  f o r  small r t h e  e r r o r  i nc reases  f a i r l y  r a p i d l y  and then  qu ick ly  

l e v e l s  o f f  t o  a cons t an t  va lue  which i s  d i f f e r e n t  f o r  each set  of 8 and 

m va lues .  beyond which 

t h e  l e v e l i n g  o f  t h e  va lues  f o r  E t akes  place. 

m 

The smaller t h e  8 t h e  higher is t h e  va lue  o f  r m 

For Haze H and Haze C ,  t he  p l o t s  of  E make an  inve r t ed  i n t e g r a l  

s i g n  (1) wi th in  t h e  r 

inc reas ing  wi th  t h e  decrease  i n  p o l y d i s p e r s i t y  of  t h e  s i z e  d i s t r i b u t i o n .  

F r o m  Figs. 4 . 2  and 4 . 3 ,  w e  see t h a t  for  8 = 1 , there i s  v i r t u a l l y  no m- 

dependence f o r  any o f  t h e  hazes. For t h i s  reason, very few symbols have 

been drawn on t h e s e  l i n e s .  For 8 = 4 , w e  see t h a t  a s m a l l  m-dependence 

has s ta r ted  t o  appear ,  being most c l e a r l y  v i s i b l e  i n  Fig.  4 . 3 ,  due t o  t h e  

loga r i thmic  scale f o r  E. However, f o r  8 = loo, a c lear  m-dependence can 

be d i s t i n g u i s h e d ,  e s p e c i a l l y  i n  F ig .  4 . 2 .  We see, i n  gene ra l ,  t h a t  i s  

lowest f o r  m = 1 . 3 3 ,  and t h a t  t h e r e  i s  l i t t l e  d i f f e r e n c e  between t h e  

range of 0 . 1  pm t o  10.0 urn, t h e i r  s teepness  m 

0 

0 
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curves for m = 1.55 and 1.65. However, the presence of a small amount of 

absorption immediately raises E, although the actual value of this 

absorption appears to have little effect. 

Effect of Polydispersity: Comparing the E (and E) vs r plots m 
for the three models, one can reach the following conclusions: 

It can be seen from the plots presented here that, in general, 

for given values of 8 and r , the higher the polydispersity the higher 

the error, E. This is due to the predominant forward scattering of the 

large particle component, implied by the increased polydispersity. We 

should note, however, that the saturation values of E and E (both = 0.5) 

are not affected by polydispersity, but that these values are reached 

"sooner" for a more polydisperse haze than for a less polydisperse haze. 

A saturation value of E 0.5 implies a Q ' value of 1.0. A n  

explanation for this is as follows. 

amount of scattered radiation collected at the detector increases as 

the large particle component increases which, in effect, reduces Q'from 

a value of about 2.0 (assumed for large partic1es)to a minimum value 

of 1.0. The saturation value for 

and 45% for 8 = 4 for Haze M, a difference of about 5%. This difference 

however, tends to decrease as aerosol size distributions become less 

polydisperse, implyingsmaller number of large particles, so that the 

saturation value of approaches 50%. 

m - 

ext 

For the same value of 8, the 

tends to be about 50% for 8 = loo 

0 
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B. Resul t s  f o r  ii and a s  a funct ion of 8 

Figures  4.4 (a, b ,  and c)  show the  behavior of E as a func t ion  

of 8 f o r  s i x  va lues  of mode rad ius  (0.1,  0.15, 0.50 ,  1.0 ,  2.5, and 10.0 pm) 

and m = 1.55 f o r  each of t h e  th ree  s i ze  d i s t r i b u t i o n  models, r e spec t ive ly .  

Again, t he  e f f e c t s  of  po lyd i spe r s i ty  a r e  q u i t e  apparent  i n  t h e  inc reas ing  

spread of t h e  E vs 0 p l o t s  f o r  lower r 

p o l y d i s p e r s i t y  decreases .  

values  (below 1 .0  pm) a s  t h e  m 

Figure 4.5 (a ,  b ,  and c )  i l l u s t r a t e  t h e  behavior of as a 

func t ion  of 8 f o r  f i v e  va lues  of r (0.1,  0.4, 1 .0 ,  4 .0 ,  and 1.0 pm). m 

symbols without  a cross r ep resen t  t h e  M i e  theory  r e s u l t s  and t h o s e  wi th  a 

c r o s s  r ep resen t  t h e  approximate r e s u l t s .  The d iscuss ion  of t h e i r  com- 

par i son  w i l l  be presented i n  the  next  s ec t ion .  Only t h e  M i e  theory 

r e s u l t s  w i l l  be discussed here .  

t he  cases  shown i n  F igs .  4 .4  and 4.5 w a s  merely f o r  t he  sake of t h e  c l a r i t y  

The choice of d i f f e r e n t  rm values  f o r  

of t he  graphica l  d i sp l ay .  The p l o t s  i n  F igs .  4.5 ( a ,  b ,  and c )  a l s o  show 

t h a t  t h e  co r rec t ion  f a c t o r  f a l l s  r ap id ly  with increas ing  8 f o r  l a r g e  

r values  and then l e v e l s  off quickly t o  a value c l o s e  t o  0.5. For l a r g e  

p a r t i c l e s ,  t h e  plots a r e  p r a c t i c a l l y  i d e n t i c a l  f o r  a l l  the three models. 

m 

However, f o r  small  values  of r , t h e r e  is  a considerable  spread i n  t h e  

values  of R. 

m 
- 

C. Comparison between the  Mie Theory and Di f f r ac t ion  Formulation 

Consider F igs .  4.5 ( a ,  b ,  and c )  and 6(a ,  b ,  and c )  represent ing  
- 

t h e  R vs  8 r e s u l t s  f o r  nonabsorbing (m - 1.55) and absorbing ( m  = 1.55 - 
i 0.05) ae roso l s ,  r e spec t ive ly .  Symbols with c ros s  represent  t he  
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, results due to Rayleigh formulation and those without cross the results 

due to Mie theory. Figures (a), (b) and (c) represent the models: 

Haze M, Haze H, and Haze C, respectively. 

Figures4.5 (a, b, and c )  show that, for nonabsorbing aerosols, 

the agreement between the Mie and the Rayleigh approximation is not as 

good for small rm as it is for large r 

to be expected since the Rayleigh diffraction formula Eq. (13) is only 

valid for large particles. 

large and small r 

aerosol) than for Haze C, indicating that for more polydisperse size dis- 

persions the agreement between the Rayleigh formulation and the exact 

formulation tends to improve. Comparison of these results with those for 

monodispersions in Ref. 62 also substantiates the trend. The remarks for 

the case of nonabsorbing aerosols apply to the case of absorbing aerosols 

(m = 1.55 - i0.05) as well, except for the additional conclusion that the 

agreements between the Rayleigh and Mie results for all models are con- 

siderably better for the absorbing aerosols than for the nonabsorbing 

(See FigS.4.6 (a, b, and c)). The latter conclusion is again in line 

with the o n e  made €or monodispersions in Ref. 62. 

for all three models. This is m' 

On the other hand, the agreement for both 

appears to be better for Haze M (more polydisperse m 

D- The Error Contours Diagram in r - 8 plane 
m 

Figure 4.7 showstbeerror contours for 10% (dashed line) and 

5% error (solid line) for m = 1.55 and the models M, H and C. The 

curves indicate an inflection point in Haze M (10%) curve and.Haze H 

(5%)  at about 8 = 1.5 

r - 0.1 pm. 

0 
and 8 = 6O, respectively, in the range 

m 
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1 2  

E. Experimental Design Considerations 

Equation (14a) shows how the forwardscattering correction fac- 

tor is included in the transmission law to obtain the measured (or 

apparent) optical depth T I .  Comments about the two aforementioned 

experimental geometries, discussed in Ref. 6 2 ,  also apply to the case 

of polydisperse aerosols, in additicn to the following comments 

regarding the effects of the polydispersity on the experimental 

design. 

In Ref. 62 (Fig. 4.6) , results were plotted for 6 as a function 

of x8 for the two aforementioned experimental geometries. For the 
14 

polydisperse case, however, R(x8) has to be further averaged over the 

volume extinction coefficient, to yield E, the "path-averaged cor- 
A 

rection factor" for polydisperse aerosols, defined by the equation 

The symbols cap(̂ ) and bar(-) denote averaging over the path length 

and particle size distribution, respectively. 

As expressed by Eq. (18), it is not possible to express R as a 

function x 8 Z kr 8, which would enable one to make some sort of com- 

parison with the results for the monodisperse case. However, such a 

m m 

comparison becomes possible if we make the further assumption that 

Q = 2, which is a reasonable one for the case of large particles for 

whi-ch the Rayleigh formulation is valid. Then, Eq. (13) reduces to 
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I R = R(kr 9) = 
m 

1 z 

where 

z = r/r z = rl/rm, m' 1 

(19) 

z = r2/rm 2 ( 2 0 )  

.. - 
R, obtained by using Eq. ( 1 9 ) ,  can easily be plotted as a function of 

y(= kr 8 1 ,  for the three size distributions for each of two detector m 
systems, as shown in Fig.4.8. The resulting plots are similar in shape 

to those for the monodisperse aerosols in Paper I, with the values 

of R converging to 1 and 0.5 for y -f 0 and a, respectively. However, 

a comparison between the two sets of p l o t s  easily s h o w s  that increasing 

the polydispersity results in a translation of the curves toward the 

lower y values, or, in other wordsl maximum gradients for R occur at 

lower values of y .  

In order to make accurate transmission measurements, it is impor- 

tant that the experimental design be based on those values of y for 

which either R -t 1 or R + 0.5 .  But to be able to do so, some reason- 

able prior knowledge of both the mode radius r 

is required. 

and the polydispersity m 

F. A-Dependence of R and E 

All the results shown in the various plots were computed 

for A = 0.55 pm. For any other  value A', these same results are valid 

for the three models, Haze M, Haze H I  and Haze C, provided r is replaced 

by r; such that 

m 

r;/A' = rm/A (21) 
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A more detailed parametric study of the behavior of the 

forwardscattering effects involved in different transmission measurement 

experiments designed to measure optical extinction and visibility in the 

atmosphere will be presented in a separate publication. 

G. Results for Power Law Size Distributions 

In Fig. 4.9 (a, b, and c), we present a few selected results 

Figures 4.9a and 4.9b for the case of a power law size distribution. 

show a series of error contours in 8 - v plane, for  refractive indices of 

1.33 - iO.0 and 1.55 - i0.05, respectively. These two refractive indices 

usually produced the largest and smallest errors (respectively) for a 

given 8 - v combination. Since an increase in v leads to a reduction 

in large particle content, the shape of these plots is inverted compared 

to those in Fig. 4.7. 

Figure 4.9~ shows plots of vs 8 for a refractive index of 

1.55 - i0.05, and for five selected values of V. The Rayleigh approxi- 

mation results are included for comparison. (Again, symbols without a 

cross represent Mie results; those with a cross represent Rayleigh results. 

The shape of these curves is simular to those in Figs. 4.5 and 4.6. We 

see from Fig. 4.9~ that the Rayleigh approximation is good for this 

complex refractive index over the full range of V values considered. 

As in the case of the Deirmendjian models, the Rayleigh approximation is 

not as good for a real refractive index. 

(vi) Summary Remarks 

From the foregoing discussion, it is obvious that the transmission 

law as expressed by Eq. (1) cannot be used except in the case of small 
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particles, for which it is merely a good approximation. The effect of 

not only the particle size distribution, refractive index and shape 

but also the geometry of the optical system on the apparent volume 

scattering and extinction coefficients must be considered. 

This study shows that the 6 (E) decreases (increases) as the 
size distribution becomes more polydisperse. This result can be 

explained by the fact that as the polydispersity becomes greater, the 

relative proportion of larger particles increases, resulting in an 

increase in forwardscattered radiation within narrower angles. The 

results are valid for conditions in which multiple scattering effects 

can be neglected, and only single scattering predominates. 

The lens-pinhole detector geometry yields the most accurate trans- 

mission/extinction results, provided the design conforms to the pre- 

scription that the value of y in Fig. 4.8 should be such t h a t  E ,is close 

to either 1.0 or 0.5. 
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4 . 2  FORWARD SCATTERING CORRECTIONS TO SOLAR RADIOI"RY 

Following the  ex tens ive  discussions of Angstrom (Refs. 64 and 65 and) 

o the r s  (Ref. 6 6 ) ,  it i s  w e l l  known t h a t  measurements of a t tenuated  d i r e c t  

s o l a r  r a d i a t i o n  by pyrhel iometers  and sun photometers a r e  subject t o  

e r r o r s  due t o  t h e  presence of d i f f u s e  sky r ad ia t ion  wi th in  the  detec-  

t o r ' s  f i e l d  of  v i e w  ( F O V ) .  Diffuse r ad ia t ion  c o n s i s t s  of both s ingly-  

and mul t ip ly-sca t te red  r ad ia t ion .  The amount of  d i f f u s e  r a d i a t i o n  

depends on t h e  instrument  ape r tu re  an2 the  c h a r a c t e r i s t i c s  (amount and 

kind) of  t he  scatterers i n  t h e  atnaosphere. The r e s u l t s  discussed by 

Angstrom (Refs. 64 and 65) were based on a summary of a g r e a t  number of 

measurements of circumsolar  r ad ia t ion ;  and those by Shaw (Ref. 66), w e r e  

based on computations of  d i f f u s e  sky i n t e n s i t y  using the  Deirmendjian- 

Sekera pe r tu rba t ion  approach (Ref. 4 1 ) -  In  t h i s  s ec t ion ,  w e  show how, 

f o r  r e l a t i v e l y  c l e a r  atmospheres, these  r e s u l t s  can be understood i n  

terms of the  so-ca l led  forward s c a t t e r i n g  co r rec t ions  t o  o p t i c a l  ex t inc-  

t i o n  measurements discussed i n  two e a r l i e r  papers  (Refs. 6 2  and 67), and 

the  mul t ip l e  s c a t t e r i n g  cont r ibu t ions  due to  molecules a lone.  Under 

moderately c l e a r  sky condi t ions ,  the  major cont r ibu t ion  t o  the  d i f f u s e  

sky r a d i a t i o n  en te r ing  the  FOV of the  de t ec to r  a t  t he  ground-level i s  

s i n g l e  s c a t t e r i n g  (SS) by aerosol  p a r t i c l e s  and molecules and mul t ip l e  

s c a t t e r i n g  (MS) by molecules. Following the  pe r tu rba t ion  approach, we 

s h a l l  assume here  t h a t  the  M S  cont r ibu t ions  due t o  ae roso l s  a r e  neg l ig ib l e .  

Discussions of t hese  SS and M S  cont r ibu t ions  w i l l  be presented f o r  severa l  

t y p i c a l  aerosol  s i z e  d i s t r i b u t i o n s .  I t  w i l l  be shown t h a t  f o r  c l e a r  sky 

condi t ions ,  e r r o r s  due to molecular s c a t t e r i n g  may be neglected f o r  many 

p r a c t i c a l  purposes.  
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(i) Scattering Contributions 

Consider a radiometer with a c i r c u l a r  ape r tu re  having a view cone 

of so l id  angle  G _ ,  and i ts  a x i s  centered on t h e  s o l a r  d i sk .  Figure 4.10 

shows 

t o  be 

shown 

V 

(schematical ly)  t he  geometry involved. The de tec to r  FOV i s  assumed 

c i r c u l a r ,  with a half-angle  JID. 

how t o  ob ta in  an e f f e c t i v e  aper ture  half-angle  i n  t h e  case of a 

Angstrom and Rodhe (Ref. 64) have 

r ec t angu la r  field-of-view, and i t  w i l l  be assumed t h a t  such a procedure 

has  been performed i n  the  case of such a non-circular field-of-view. 

The t o t a l  s p e c t r a l  i r r ad iance  I ( A )  a t  Wavelength A, measured by t h e  

r ece ive r ,  is  composed of  cont r ibu t ions  I D I R ( A ) ,  due t o  a t t enua ted ,  d i r e c t  

s o l a r  r a d i a t i o n ,  and I D I F ( X ) ,  due to d i f f u s e  sky radiance en te r ing  t h e  

FOV, so t h a t  

where I ( A )  is  given by B o u p e r ' s  law, namely D I R  

- ~ c ( y ~ )  s ec  B s  
1 ( A )  = I o ( A )  e 

D I R  

and I ( A ) ,  by the  i n t e g r a l  of sky radiance over  the  FOV, 
DIF 

Here, I (XI i s  the  unattenuated s o l a r  s p e c t r a l  i r r ad iance  inc ident  on top  

of the  atmosphere; 8 is  the  s o l a r  zen i th  angle;  ~ ( y  ) i s  the  t o t a l  o p t i c a l  
S 0 

th ickness  above the  po in t  of observat ion ( a t  a l t i t u d e  y km) , and BO,) i s  

the  d i f f u s e  sky rad iancewi th in  t h e  elemental  s o l i d  angle d.Q 

0 

0 

D '  

In  t h i s  paper ,  w e  r e s t r i c t  our  d i scuss ions  t o  t h e  case of c l e a r  t o  

low t u r b i d i t y  s k y  condi t ions ,  so t h a t  the  major con t r ibu t ions  to  d i f f u s e  
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. 
3 

sky r a d i a t i o n  e n t e r i n g  t h e  FOV can, f o r a l l  p r a c t i c a l  purposes,  be assumed 

t o  be due t o  s i n g l e  s c a t t e r i n g  by p a r t i c u l a t e s  and molecules ( I  and 

mul t ip l e  s c a t t e r i n g  by molecules (IMs) alone.  

ss 
M 

Thus, 

A. Sing le  S c a t t e r i n g  Contr ibut ion 

Fig.  4.10 i l l u s t r a t e s  t h e  SE geometry. Following Green e t  a1 

( R e f .  i), t h e  SS con t r ibu t ion  t o  t h e  sky r a d i a t i o n  i s  given by the  express ion  

(with t h e  A-dependence suppressed) : 

-T (y) sec Os 
ISS = Io Lo dy j$ s i n  9 d $  I:'d($ e sec 0 

where t h e  volume s c a t t e r i n g  func t ions  f o r  molecules and p a r t i c u l a t e s  

( s u b s c r i p t s  M and P) are def ined  by 

-1 -1 
[km sr ] 

t he  volume s c a t t e r i n g  c o e f f i c i e n t s ,  by 

-1 
[ km I 
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FIG. 4.10 Scattering Geometry for a Radiometer 
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and t h e  o p t i c a l  depths  by 

In t h e  above equat ions ,  k = 2T/X i s  t h e  wavenumber; i and i are  t h e  M i e  

i n t e n s i t i e s  ( R e f .  32 ) ;  m i s  t h e  r e f r a c t i v e  index of a i r  a t  15  C and 1013 m b  

p re s su re  ( R e f .  6 8 ) ;  N (y)  i s  t h e  molecular number d e n s i t y  a t  a l t i t u d e  y;  m is 

t h e  a e r o s o l  r e f r a c t i v e  index; 8 is t h e  zen i th  angle  of an element of s o l i d  

angle ,  and is  g iven  by t h e  r e l a t i o n  

1 2 
0 

S 

S 

(30) cos  $ s  = cos $s cos J, - sin $ s  s i n  J, cos w 

F i n a l l y ,  r l ( r , y )  i s  t h e  ae roso l  number dens i ty  pe r  u n i t  r a d i u s  a t  r ad ius  r 

and a l t i t u d e  y ( c m  urn ) .  It w i l l  prove u s e f u l  t o  de f ine  t h e  ove r -a l t i t ude  

d i s t r i b u t i o n ,  N(r ,y)  , by 

-3 -1 

Hence, f o r  example, w e  have 

B. Approximate Ana ly t i ca l  Solu t ion  

Equation ( 2 6 )  involves a t r i p l e  i n t e g r a l ,  and i n  gene ra l  would r e q u i r e  

numerical computation. However, s i n c e  most modern sun radiometers a r e  

designed t o  have s m a l l  f i e l d s  of view (9, < 8' ) , it seemed worth exp lo r ing  

the p o s s i b i l i t y  of making some reasonable approximations , and performing 
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a n a l y t i c a l l y  as many of  t h e  i n t e g r a l s  as p o s s i b l e .  Although t h i s  l e a d s  

to  a s m a l l  loss of  accuracy, w e  f e e l  t h i s  loss i s  more than outweighed 

by t h e  i n s i g h t  t h a t  may be gained i n t o  t h e  dependence of Iss on t h e  

d i f f e r e n t  parameters and va r i ab le s .  

a long  wi th  a d i scuss ion  of t h e i r  accuracy, have been r e l ega ted  t o  

Appendix 4 A ,  l eav ing  a discuss ion  of t h e  r e s u l t s  t o  be presented  he re .  

The d e t a i l s  of t hese  manipulations,  

Provided t h a t  $ is  reasonably s m a l l  and 0 no t  too l a r g e  D S 
0 5 60 ) ,  w e  may perform t h e  i n t e g r a t i o n s  over  w and y t o  a r r i v e  at (4  s 

t h e  following expression: 

where t h e  columnar s c a t t e r i n g  func t ions  are de f ined  by 

F ' (+ ,yo )  = r F($,Y) dY 

yo 

The i n t e g r a l  over  Fb($J,yo) depends on  t h e  pa r t i cu la t e  phase func t ion  

and,  hence, on the  p a r t i c u l a t e  s i z e  d i s t r i b u t i o n  which, i n  gene ra l ,  may be 

a l t i t u d e  dependent, i . e . ,  Q ( r , y ) .  However, i n  R e f s .  62 and 67, w e  have 

shown how t o  perform such i n t e g r a t i o n s ,  a t  least  formally,  by in t roducing  

a n  e r r o r  f a c t o r ,  E ,  o r  co r rec t ion  f a c t o r ,  R ,  which w i l l  be denoted he re  by 

E and R and def ined  as: 
P P I  

( 3  

(35a 
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R = l - E p  (35b) 
P 

and 

An explana t ion  of  E q .  (35a) ,  def in ing  the  e r r o r  f a c t o r ,  i s  b r i e f l y  des- 

c r ibed  i n  Appendix 4B.  I n  R e f s .  62 and 67 (and Appendix 4B), a ba r  ( - )  and a 

t i l d e  (--) over  E and R ,  a r e  used t o  denote the  r e spec t ive  averaging with 

r e spec t  t o  s i z e  d i s t r i b u t i o n  ( i . e . ,  i n t e g r a t i o n  over r) and pa th  length  

( i . e . ,  i n t e g r a t i o n  over  y ) .  For no ta t iona l  convenience, we omit both 

these  symbols from Ep and 

must be kept  i n  mind t h a t  both i n t e g r a t i o n s  a r e  c l e a r l y  implied here .  

Thus, i n  Eq. (331, 

i n  the  main body of  t h i s  paper;  though it 

In t h e  molecular case ,  t he  i n t e g r a l  over FA($,yo) can be performed 

exac t ly  t o  y i e l d  

= TM(yo) EM 

where 

where T ( y  ) i s  the  molecular o p t i c a l  depth and E is  the  e r r o r  f a c t o r  

€or  e x t i n c t i o n  measurements due t o  forward s c a t t e r i n g  i n  a pure molecular 

M o  M 

atmosphere. For 
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Using E q s .  (36) and (37a) i n  E q .  (38) , one ob ta ins  

c.  Molecular MS Contr ibut ion 

In  h i s  paper ,  Shaw(Ref. 66) made u s e  of the  pe r tu rba t ion  method 

of  Deirmendjian  ref. 41) t o  include mult iply-scat tered l i g h t  due t o  

molecules alone. Recently, we have examined (and s l i g h t l y  modified) t h i s  

method (Refs.  26 ,  27 ,  and 50) , and shown t h a t  m o s t  of the  multiply- 

s c a t t e r e d  l i g h t  i n  t h e  aureole  region can be accounted f o r  by t h i s  approach, 

a t  l e a s t  f o r  aerosol  o p t i c a l  depths T p  5 0.2 .  

of p a r t i c u l a t e  MS may lead  t o  e r r o r s ,  which may r equ i r e  a much more complete 

(For T p  > 0 . 2 ,  t he  neg lec t  

and complicated a n a l y s i s ) .  

I n  Ref. 2 6 ,  we showed t h a t ,  a t  l e a s t  within the  aureole  reg ion ,  

we may use the  per turba t ion  method by simply rep lac ing  the  molecular 

by an e f f e c t i v e  molecular o p t i c a l  depth t ( y  ) which o p t i c a l  depth,  TMl  

depends on 

cussed i n  d e t a i l  i n  R e f -  2 7 . )  

M o  

~ ( y ~ ) ,  o s  and on ground albedo, A .  (This dependence i s  d i s -  

A l t e rna t ive ly ,  we may include molecular 

M S ~ M .  mul t ip le  s c a t t e r i n g  by adding a second molecular term of the  form t 

I m p l i c i t  

but ion of the  mult iply sca t t e red  l i g h t  i n  the  region of  t h e  s o l a r  aureole  

( i . e . ,  s c a t t e r i n g  angles 2 1 0  1 i s  s i m i l a r  t o  t h a t  of  the  s ing ly  s c a t t e r e d  

Rayleigh con t r ibu t ion ,  only the  magnitude d i f f e r s  by a f a c t o r  f .  

moderately c l e a r  s k i e s ,  t h i s  i s  a reasonably accura te  approximation. Thus, 

here  is  the  assumption t h a t  t h e  shape o f  t h e  angular d i s t r i -  

0 

For 

we may wri t e  

M - ~ ( y ~ ) s e c  4 S 

t M S  ('0) EM 
I = I  s e c 4  e 

MS 0 S 
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and, hence, w e  g e t  f o r  t h e  t o t a l  d i f f u s e  r a d i a t i o n  

- ~ ( y  ) s e c $ s  
0 

IDIF - - ISS + I  MS S = I  0 s e c 4  S e {Tp(y0)Ep + (TM(yo) + tMS(yo))EM} (39) 

i s  related t o  t h e  e f f e c t i v e  molecular o p t i c a l  depth t introduced i n  M 

tw, tM and t h e  r a t io ,  f = t /T M M' are given i n  Ref. 26 by tM = T M  + tMS. 

T a b l e  4 . 1  f o r  a series of va lues  of T~ (covering t h e  f u l l  v i s i b l e  sgectrum) 

and T up t o  0 . 2 .  A solar z e n i t h  angle  of  45 w a s  chosen, and ground albedo 

w a s  assumed t o  be zero .  I n  gene ra l ,  t h e s e  r e s u l t s  are n o t  s e n s i t i v e  t o  

unless t h e  sun i s  q u i t e  low (9 ,  > 70°) i n  t h e  sky,  i n  which case 

s p h e r i c a l  e a r t h  c o r r e c t i o n s  have t o  be taken i n t o  account and most of our  

approximations break down. It  i s  poss ib l e  t o  make allowance f o r  ground 

r e f l e c t i o n  by mul t ip ly ing  tM ( o r  f )  by a f a c t o r  o f  (1 + A ) .  Also shown i n  

T a b l e  4 . 1  is  t h e  r a t i o  F = t /T which w i l l  prove u s e f u l  i n  t h e  following 

d i scuss ion .  

0 

P 

M P' 

(ii) T o t a l  Measured I n t e n s i t y  

From t h e  above d i scuss ion ,  w e  see t h a t  t h e  t o t a l  i r r  3iance recorded 

by t h e  d e t e c t o r  is  then  simply t h e  sum o f  E q .  (23) and Eq. (39) ( c . f . ,  

Eq. (2211,  i . e . ,  

For T ( y  1 % 0 . 2 ,  tM(yo) % 0.5,  and 4 % go,  EM i s  about 0 .01  ( c . f . ,  Eq. ( 3 7 ) )  I 

and f o r  t y p i c a l  ae roso l s ,  Ep is about 0 . 1  ( see  below). 

t h e  second t e r m  i n  Eq. 

roughly 5% t o  t h e  t o t a l .  

c o n t r i b u t i o n  is  roughly 1%. Since the  values of T t and 8 used i n  

P O  D 

So, f o r  eS 5 60°, 

(40) is  5 0.05--i.e., t h e  d i f f u s e  l i g h t  con t r ibu te s  

2 4O, t h e  d i f f u s e  For a solar radiometer with 4 D 
P' M S 
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TABLE 4 .1 :  E f f ec t i ve  M o l e c u l a r  O p t i c a l  D e p t h s  and  R e l a t e d  M u l t i p l e  

S c a t t e r i n g  F a c t o r s ,  f o r  8 and  45O and A = 0.0 
S 

F E t / T  M P  € 5 t / T  
TM tNS M M  

0.02 0.02 

0.05 

0.10 

0.05 

0.10 

0.20 

0.40 

0.20 

0.02 

0.05 

0.10 

0.20 

0.02 

0.05 

0.10 

0.20 

0.02 

0.05 

0.10 

0.20 

0.02 

0.05 

0.10 

0.20 

0.002 

0.007 

0.020 

0.067 

0.007 

0.014 

0.031 

0.086 

0.020 

0.031 

0.055 

0.124 

0.067 

0.086 

0.124 

0.221 

0.243 

0.279 

0.345 

0.497 

0.022 

0.027 

0.040 

0 -087  

0.057 

0.064 

0.081 

0.136 

0.120 

0.131 

0.155 

0.224 

0.267 

0.286 

0.324 

0 .421  

0.643 

0.679 

0.745 

0.897 

1.110 

1.338 

1.993 

4.338 

1.135 

1.276 

1 .621 

2.724 

1.199 

1.310 

1.552 

2.242 

1.334 

1 .431 

1 .621 

2.104 

1.608 

1.698 

1.862 

2.242 

1.110 

0.535 

0.349 

0.434 

2.838 

1.276 

0.810 

0.681 

5.993 

2.621 

1.552 

1 . 1 2 1  

13.338 

5.724 

3.242 

2.104 

32.167 

13.587 

7.449 

4.483 
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t hese  examples are probably a l i t t l e  b i t  on the high s i d e ,  and s i n c e  m o s t  

s o l a r  rad iometers  have view-cone half-angles o f  less than 5", it is c l e a r l y  

reasonable  to conclude t h a t ,  i n  gene ra l ,  t h e  d i f f u s e  c o n t r i b u t i o n  t o  t h e  

t o t a l  measured i r r a d i a n c e  w i l l  be less than,  o r  of  t h e  o r d e r  o f ,  1%. 

With t h e s e  r e s u l t s  i n  mind, w e  may now re-write Eq. (40) as 

fo l lows  : 

( i i i . 1  Corrected O p t i c a l  Thickness and S e n s i t i v i t y  A n a l y s i s  

Much of the spectral  solar radiometry i s  performed t o  determine the 

to t a l  atmospheric o p t i c a l  th ickness  , and therefrom, f o r  example , the 

a e r o s o l  o p t i c a l  th ickness .  

c o n t r i b u t i o n  t o  t h e  t o t a l  measured i n t e n s i t y  i s  only  about  1%, w e  now 

show t h a t  the e r r o r  i n  t h e  aerosol  o p t i c a l  th ickness  obtained from such 

measurements may s u f f e r  somewhat g r e a t e r  e r r o r .  

Although w e  have j u s t  s een  t h a t  t h e  d i f f u s e  

( a )  Corrected Op t i ca l  Thickness 

The apparent ,  o r  measured, o p t i c a l  t h i ckness  ~ ' ( y  ) is  def ined  
0 

according to  BOuguer ' s  l a w ,  v i z . ,  

- - T I  ( yo)sec  $s 
1 = 1  e ( 4 2 )  

0 

Then, by comparing Eqs. (41) and (42)  I one can o b t a i n  t h e  following 

r e l a t i o n  between the  measured o p t i c a l  th ickness  and t h e  t r u e  o p t i c a l  

t h i ckness  : 
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Omitting the  y dependence, one can rewri te  Eq. (43)  as  

T ' = T - T  E - t  E (44) P P  M M  

As w i l l  be shown below, E is gene ra l ly  l a r g e r  than E by a f a c t o r  of  P M 

10 o r  so. 

l a r g e r  than ,  say,  2 ,  w e  may neg lec t  t he  molecular term i n  Eq. ( 4 4 ) .  (This 

w i l l  c l e a r l y  depend on both t h e  r a d i a t i o n  wavelength, and t h e  atmospheric 

haz iness . )  I n  t h i s  case, w e  may w r i t e  Eq. (44)  as 

Thus, under circumstances i n  which the  r a t i o  F = tM/Tp  i s  no 

T ' = T - T  E 
P P  (45) 

And f u r t h e r  if T = T + T + T , then from Eq. (45) one ob ta ins :  
M P O3 

Assuming t h a t  T and T are known, then the  experimental  value f o r  t h e  

p a r t i c u l a t e  o p t i c a l  depth,  Tb, which may be obta ined  by sub t r ac t ion  from 

T I  ( i . e . ,  T I  = T + T '  + T 1 ,  w i l l  be i n  e r r o r  by a f a c t o r  of R i . e . ,  

O3 M 

P '  
*3 

M P 

T;' = T p  Rp (47)  

f i  

Thus, w e  see t h a t  the  co r rec t ion  f a c t o r ,  Rp,  r epresented  by i n  ou r  

e a r l i e r  papers  ( R e f s .  62 and 6 7 ) ,  i s  p r e c i s e l y  t h e  f a c t o r  w e  need t o  c o r r e c t  

experimentally-determined values  of aerosol  o p t i c a l  depth,  i n  many cases .  

I n  the  cases where molecular cont r ibu t ion  cannot be ignored,  t he  following 

r e l a t i o n  should be used 

i . e . ,  
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(b) S e n s i t i v i t y  Analysis  

I n  this s e c t i o n ,  w e  s h a l l  t r y  t o  o b t a i n  some idea  of t h e  

behavior  o f  E o r  R f o r  d i f f e r e n t  s i z e  d i s t r i b u t i o n s  and ape r tu re  h a l f -  

ang le s ,  and compare ou r  r e s u l t s  (Eq. ( 4 8 ) )  with  those  of Angstrom and 

Shaw. Although t h e  i n t e g r a l s  i n  Eq. (35) cannot be performed a n a l y t i c a l l y  

f o r  any real  case, it i s  possible t o  gain cons iderable  i n s i g h t  by a br ief  

cons idera t ion  of  t h e  Henyey-Greenstein phase func t ion ,  which i s  usua l ly  

P P 

w r i t t e n  as  

where g i s  t h e  asyinmetry factor ,  and p = cos @. 
for  Ep 

I n  t h i s  case, w e  o b t a i n  

N o t e  t h a t  Ep( l , g )  = 0 and Ep(- l ,g )  = 1, as requi red .  

0 For small values  of QD (say $, 6 10 1,  and g n o t  t o o  c l o s e  to  un i ty ,  

w e  may expand Eq. (50) to g ive  
CI 

2 
c . f . ,  Eq. ( 3 7 ~ )  f o r  EM. 

which is  j u s t  10 t i m e s  EM. 

Note t h a t  f o r  g = 2/3, Eq.  (51) g ives  Ep = 3.75 qD , 

f o r  a number of va lues  of g. Also yD In .  Fig.  4 .11,  w e  p l o t  E aga ins t  

p l o t t e d  on Fig.  4 . 1 1  is  E mul t ip l i ed  by 10. 

P 

As can be seen,  t h i s  curve l i e s  
M 
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FIG. 4.11 Error F a c t o r  f o r  the H e n y e y - G r e e n s t e i n  P h a s e  Function 
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approximately where t h e  curve f o r  g = 0.67  might be expected t o  l i e .  

Since mast t roposphe r i c  a e r o s o l s ,  and v i r t u a l l y  a l l  fogs  and c louds ,  have 

asymmetry f a c t o r s  o f  around 0.7 o r  higher (Refs. 69, 701, our earlier state- 

ment t h a t  Ep should normally exceed E 

be c o r r e c t  for  a wide range of view-cone ha l f -angles ,  

by an o r d e r  of  magnitude i s  seen t o  

. 
M 

JID 

I n  R e f -  6 7 J  presented  a number of  graphs d e p i c t i n g  t h e  behavior of 

E and R as func t ions  of  both view-cone angle and s i z e  d i s t r i b u t i o n  

parameters, f o r  a number of modified-gamma-type s i z e  d i s t r i b u t i o n s ,  and 

a l s o  f o r  a power l a w  s i z e  d i s t r i b u t i o n .  

some f u r t h e r  examples of R t o  i l l u s t r a t e  t he  magnitude o f  t h e  e f f e c t .  

P P 

Here, i n  F igs .  4 .12  and 4 .13 ,  w e  g ive  

P 

-V  I n  F igs .  4.12 a )  and b ) ,  w e  consider t h e  s i z e  d i s t r i b u t i o n  n ( r )  = C r 

f o r  0.01 5 r 5 15 pm, and  plot^ aga ins t  u f o r  a number of  view-cone ha l f  

ang le s  a n d R p a g a i n s t  JI f o r  a number of v values .  (Being r a t i o s ,  and E are  

independent of s c a l i n g  parameters such as C . )  W e  see t h a t ,  even f o r  s m a l l  

view cone ang le s ,  % d e v i a t e s  from u n i t y  q u i t e  s i g n i f i c a n t l y ,  i f  V is s u f f i -  

c i e n t l y  small .  

particles.) For l a r g e r  view-cone angles ,  even v = 3 implies a s i g n i f i c a n t  

effect .  

P 

D P 

(Small va lues  of v imply a higher  percentage of large 

2 -br 
I n  F i g .  4.13, w e  cons ider  t h e  s i z e  d i s t r i b u t i o n  n ( r )  = ar  e , and 

p l o t  R a g a i n s t  view-cone angle ,  €or  seve ra l  va lues  of b. Again, w e  see 

t h a t  f o r  s m a l l  va lues  o f  b ,  a s i g n i f i c a n t  c o r r e c t i o n  i s  r equ i r ed  even f o r  

s m a l l  view-cone angles.  ( S m a l l  b ,  aga in ,  impl ies  more large particles,  as 

t h e  mode r a d i u s  of t h i s  s i z e  d i s t r i b u t i o n  is  given by r = 2/b pm.) With 

l a r g e r  view-cone ang le s ,  even moderate b-values imply a s i g n i f i c a n t  

c o r r e c t i o n .  

P 

m 
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(iv) R e t r i e v a l  A l g o r i t h m s  for Aerosol S i z e  D i s t r i b u t i o n  

The question arises: Can we use the results presented in this paper 

to determine the true optical thickness or extinction coefficient without 

an a p r i o r i  knowledge of the aerosol size distribution (often the object 

of the extinction measurements in the first place)? The answer is in the 

affirmative; we shall explain, in this section, the strategies pnr! t he  

algoritjms adopted for the retrieval of aerosol size distributions from 

the measured optical quantities. 

Many tropospheric aerosols follow power-law size distributions (Ref. 711 ,  

and thus the results presented in Fig. 4.12 are applicable. To this end, we 

note that for a power-law distribution, E, and R are independent of wave- - P 

length, and E is given by 
P 

x sin $J (i + i2) d$J dx 1 

[ x2" Q(x)  dx 

Ep(n(r) - r -V = I, j: -v 

where the size parameter, x = kr. 

Thus, if the underlying size distribution is of power-law form, 

which leads, as is well known (Refs. 71, 721, to power-law behavior for 'c 

as a function of A ,  then the measured T' values will still exhibit power- 

law behavior, with the same power. Hence a simple procedure is available 

P 

P 

in such cases: to he measured T I  values, fit the power-law curve 
P 
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Then, s ince  V = c1 + 3 ,  go t o  Fig.  4.12 and read off the value of f o r  t h i s  

V and view-cone ha l f  angle  $ Fina l ly ,  c o r r e c t  a l l  values  of T' by 

mult iplying by R 

D' P 
-1 
P (or  a l t e r n a t i v e l y ,  m u l t i p l y  6; by R i l l .  

For o t h e r  s i z e  d i s t r i b u t i o n s ,  R is not  independent of wavelength, P 

and t h i s  simple procedure i s  not ava i l ab le .  However, it i s  easy t o  modify 

invers ion  algorithms t o  include the  forward s c a t t e r i n g  co r rec t ion ,  as follows. 

Standard algorithms t o  obta in  N(r,yo) from a s e r i e s  of m u l t i s p e c t r a l  e x t i n c t i o n  

measurements a r e  based on t h e  numerical invers ion  of t he  i n t e g r a l  equat ion 

( R e f s .  73,  74, 5 7 ) -  

However, w e  now know t h a t  it is not  T b u t  T' t h a t  w e  measure, and thus  P' P 

the i n t e g r a l  equat ion t o  be inver ted  should be 

Although it i s  t r u e  t h a t  
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i s  more d i f f i c u l t  t o  compute than  Q, w e  have shown i n  Ref. St; that the 

r e c e n t  formulat ion by Wiscombe and Chylek ( R e f .  75)  makes t h e  corputa t ion  

of Q' considerably easier than it might a t  f i r s t  appear.  We a l s o  note  t h a t ,  

s ince  f o r  a given instrument  t h e  value of  $J i s  f i x e d ,  t h e r e  i s  no i n c r e a s e  

i n  t h e  number of  ke rna l  va lues  t h a t  must be computed and s t o r e d ,  so t h a t  

s to rage  on d i s k  i s  s t i l l  pract ical .  F i n a l l y ,  w e  no te  t h a t  invers ion  o f  

Eq. (551 should prove no more d i f f i c u l t  than invers ion  of Eq .  (54 ) ,  so 

t h a t  t h e  same algori thms may be used; only t h e  ke rna l  func t ions  w i l l  be 

s l i g h t l y  modified.  

D 

In  those  cases  where it i s  no t  poss ib l e  t o  ignore t h e  molecular con- 

t r i b u t i o n  t o  IDIF, then t h e  i n t e g r a l  equat ion t o  be inve r t ed  w i l l  become 

Again, t h e  inve r s ion  o f  t h i s  equat ion i s  no more d i f f i c u l t  than  inve r s ion  

of Eq. ( 5 4 ) .  

(v) D i s c u s s i o n  of A s s u m p t i o n s  

The r e s u l t  p resented  i n  Eq. (47! is  p a r t i c u l a r l y  s i m p l e  and e l egan t ,  

and it i s  worth cons ider ing  c a r e f u l l y ,  t h e  cond i t ions  under which it i s  

v a l i d .  A discuss ion  of  t h e  s impl i fy ing  approximations made i n  i t s  d e r i -  

va t ion  i s  given as follows. 

The f i r s t  approximation which w a s  needed t o  a n a l y t i c a l l y  perform t h e  

i n t e g r a t i o n  over  t h e  e q u a t o r i a l  angle ,  $, is considered i n  Appendix 4 ~ .  

This  made the  i n t e g r a t i o n  over a l t i t u d e  f a l l  out ;  t h u s ,  l eav ing  only t h e  

4-57 



i n t e g r a t i o n  over s c a t t e r i n g  angle ,  9 ,  which w a s  performed by in t roducing  

t h e  e r r o r  f a c t o r  E. The accuracy of t h i s  approximation i s  shown i n  

T a b l e  4 .2 .  E s s e n t i a l l y ,  one may conclude t h a t  t h i s  approximation w i l l  be 

accura te  f o r  most  modern radiometers ,except  f o r  t he  case of l a r g e  z e n i t h  

angles  ( >  70 1 ,  i n  which case one must take  account of sphe r i ca l  e a r t h  

co r rec t ions  

0 

The second approximation involved t h e  neglec t  of t h e  s c a t t e r i n g  c o n t r i -  

bu t ion  of molecules r e l a t i v e  t o  t h a t  of aerosols .  

much l a r g e r  than a i r  molecules, they s c a t t e r  most of the  photons i n  the  near  

forward d i r e c t i o n .  For t h i s  reason,  E i s ,  i n  genera l ,  l a r g e r  than 

EM = 3 $J Thus, neglec t  of t h e  

molecular cont r ibu t ion  would seem t o  be reasonable ,  un le s s  t he  ae roso l  

o p t i c a l  depth happens t o  be except iona l ly  low, i n  which case  Eq. ( 4 7 )  should 

be replaced by Eq. (48) .  

As t he  p a r t i c u l a t e s  are 

P 
2 
D / 8 ,  by an order  of magnitude or more. 

The t h i r d  approximation involves  the use of t h e  Deirmendjian pe r tu r -  

ba t ion  technique t o  account f o r  t h e  MS l i g h t .  This technique,  which w e  

have examined v i a  numerical experiments i n  Refs. 47 and 48, and appl ied  

success fu l ly  t o  the ana lys i s  of experimental  aureole  d a t a  (Ref. 71) 

appears t o  account f o r  most of t h e  d e t a i l s  of t h e  radiance d i s t r i b u t i o n  

i n  the solar aureole  region. Under t h i s  approximation, a l l  t h e  M S  rad ia-  

t i o n  r e s u l t s  from the  molecules a lone ,  and can be  accounted f o r  by r ep lac ing  

by an e f f e c t i v e  o p t i c a l  depth,  . Since t h e  e f f e c t  of t h i s  procedure is  
=M tM 

t o  roughly double the molecular con t r ibu t ion  t o  IDIF, t h e  arguments for  

ignoring t h i s  cont r ibu t ion  should remain v a l i d .  I f  necessary however, w e  

may employ Eq. (48) t o  include t h i s  cont r ibu t ion .  
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TABLE 4 . 2 :  Percentage Errors Involved i n  Using E q .  l A 5 j  

Solar  Zenith Angle 

30° 40° 60° 70° 

lo 

2O 

3 O  

4O 

5 O  

6O 

7O 

ao 

9O 

l oo  

0.0 

0.1 

0.2 

0.3 

0.5  

0.7 

1.0 

1.3 

1.7 

2.1 

0.0 0.0 

0.1 0.1 

0.2 0.3 

0.4 0.6 

0.7 0.9 

0.9 1.3 

1 . 3  1.8 

1.7 2.4 

2.2 3.1 

2.7 3.9 

0.1 

0.2 

0.6 

1.0 

1.6 

2.3 

3.1 

4.1 

5.3 

6.6 

0.1 

0.5 

1.2 

2.1 

3.4 

5.0 

7.0 

9.5 

12.5 

16.1 
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T;le main approximation i n  using t h e  per turba t ion  technique,  however, 

i s  t h a t  w e  have ignored a l l  MS events  which involve aerosols .  The r e s u l t s  

of our previous inves t iga t ions  (Refs. 26 ,  27 ,  5 0 )  suggest  t h a t  t h i s  assumptio1 

is highly accura te  f o r  aerosol  o p t i c a l  depths  of about 0.1, and s t i l l  quite 

accura te  upto  T = 0.2 .  F u r t h e m r e ,  t he  experimental  r e s u l t s  compiled by 

Angstrom and Rodhe(Ref. 64) i nd ica t e  that  t h e  d i f f u s e  r a d i a t i o n  con t r ibu t ion  

is d i r e c t l y  propor t iona l  t o  'I 

r e s u l t s .  

P 

which i s  i n  complete agreement with our  P' 

The fou r th  approximation was ou t l ined  between E q s .  (40) and .(41) , and 

can be expressed as  

sec es(TpEp + tMEM) 
1 + sec e s ( r p E p  + tMEM) = e 

This i s  a v a l i d  approximation ( i .e . ,  < 2% er ror ) ,  provided sec 8 (TpEp + 

t E ) is s m a l l  (3 0 . 2 ) ,  and c l e a r l y  depends on solar zenigh angle ,  

S 

M M  
L haziness ,  and $J E and EM increase roughly as $D . Again, a s  discussed 

ear l ier ,  an instrument with a small view-cone half-angle ,  J, may be used 

a t  l a r g e r  solar zen i th  angles ,  and a l s o  under more t u r b i d  condi t ions ,  

D: P 

D' 

before t h e  approximation (Eq. (58 ) )  breaks down. I t  is worth commenting 

t h a t  t h e  terms neglected i n  Appendix 4A a r e  Of s imilar form t o  the  

next t e r m  i n  the  above series expansion, and so these  t w o  e r r o r s  w i l l  

tend t o  compensate. The r e s u l t s  of Shawls numerical s tudy  ( R e f .  66), which 

employs only our t h i r d  approximation, shows t h a t  T p  - T b  i s  independent of 

u n t i l  8 reaches a l a r g e  value ( -  75 1 ,  whereupon t h i s  independence breaks 

down rap id ly .  (The higher  t he  value of T t he  sooner t h e  breakdown occurs ,  

a s  would be expected, although t h e  range of zeni th  angles  involved is q u i t e  

0 

S 

P' 
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narrow.) 

e a r t h  c o r r e c t i o n s  are requi red ,  adding f u r t h e r  complications.  

Again w e  must add t h a t  f o r  such l a r g e  solar zen i th  angles ,  sphe r i ca l -  

And, f i n a l l y ,  it has been assumed here  t h a t  t h e  sun is  a p o i n t  

source a t  i n f i n i t e  d i s t ance ,  and t h a t ,  as a r e s u l t ,  solar r a d i a t i o n  f a l l s  

on t h e  atmosphere a s  p a r a l l e l  rays .  I n  r e a l i t y ,  t he  sun has an angular  

diameter of 1 / 2  degree,  so t h a t  a l l  s c a t t e r i n g  angles ,  $ ( see  Fig.4.10)  

should be b l u r r e d  a l i t t l e ,  i . e . ,  averaged over  ? 1 /4  degree. This  

so-ca l led  b l u r r i n g  effect i s  complicated,  due to t h e  three-dimensional 

geometry, solar limb-darkening (see R e f .  76)  and t h e  wavelength-dependence 

of the  l a t t e r .  W e  s h a l l  r e f e r  t o  this as the  " f in i te -sun  e f f e c t . "  One 

r e s u l t  o f  t h i s  e f f e c t  i s  t h a t  even f o r  a radiometer with a minute f i e l d  

o f  view, such a s  i s  used i n  the  SAM-I1 and SAGE s a t e l l i t e  missions 

( R e f .  761, t h e  e f f e c t i v e  value of $ w i l l  s t i l l  be 1 / 4  degree. However, 

t h i s  s i t u a t i o n  i s  q u i t e  complex and w i l l  no t  be discussed here .  

o t h e r  e f f e c t s  o f  t h e  f i n i t e  angular s i z e  of  t h e  sun (such as i n  aureole  

measurements close t o  the  s u n ) ,  are being given c a r e f u l  examination and 

will be discussed  i n  a separa te  paper.  

D 
This  and 

( v i )  D i s c u s s i o n  of R e s u l t s  and C o n c l u d i n g  Remarks  

In  h i s  1976 paper,  Shaw ( R e f ,  66) considered j u s t  one Size d i s t r i b u t i o n  

and p l o t t e d  6T T - r '  aga ins t  1-1 (= cos 8 1 f o r  t h r e e  values  of T H i s  

r e s u l t s  show t h a t  6T 

sec  8 2 5 o r  0 2 75O. I t  i s  j u s t  f o r  t hese  l a r g e  zen i th  angles  t h a t  t h e  

exponent ia l  approximation involved i n  going from Eq. (41) t o  Eq. (42! is  

l i a b l e  t o  prove i n v a l i d ,  and so this aspec t  of  Shawls r e s u l t s  i s  i n  complete 

agreement with our  own conclusions. 

P P P s S P' 

i s  e s s e n t i a l l y  independent of P S I  unless  P 
P S 

5 0.2 i .e.  , 

S S 
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The second observat ion t o  be made from F i g ,  4 - 1 0  i n  R e f .  66 i s  t h a t  6~~ i 

d i r e c t l y  propor t iona l  t o  T - i n  complete agreement with our Eq. (47) - -  

except f o r  a s m a l l  o f f s e t  ( i .e . ,  6T 

be understood i n  terms of t he  molecular con t r ibu t ion  which w e  have chosen 

P 

# 0 when Tp = 0 ) .  This o f f s e t  can e a s i l y  P 

t o  ignore f o r  moderately t u r b i d  s k i e s ,  bu t  which should be included i n  cases  

of extremely low 'I P' 

P' a g a i n s t  p f o r  t he  same values  of 'c DIF 1 IDIR S 
Shaw also p l o t t e d  I 

H i s  r e s u l t s  suggest  t h a t  t h i s  r a t i o  i s  inve r se ly  propor t iona l  t o  p - i .e. ,  

d i r e c t l y  propor t iona l  t o  sec $ s  - which is  c l e a r l y  i n  agreement with our  

equat ions.  

S 

The r e s u l t s  presented by hgS t rom(Refs ,  64 and 65) f o r  pyroheliometer 

measurements a r e  a c t u a l l y  experimental ,  based on a synthes is  of a g r e a t  

many measurements. H e  shows p l o t s  of t h e  r a t i o  of d i f f u s e  t o  d i rec t ,  a s  

a func t ion  of 9 f o r  four  d i f f e r e n t  values  of t he  " t u r b i d i t y  parameter" 
D' 

T sec  0 

of E aga ins t  view-cone angle i n  Ref. 67. B o t h  of t hese  conclusions a r e  

c o n s i s t e n t  with our r e s u l t s .  

and t h e i r  shape a s  a funct ion of $ is cons i s t en t  w i t h  our  p l o t s  
P S' D 

W e  may conclude from t h e s e  s t u d i e s ,  t h a t  under most r e l a t i v e  c l e a r  sky 

condi t ions ,  the  d i f f u s e  cont r ibu t ion  to  the  t o t a l  i n t e n s i t y  w i l l  be small-- 

say 1% o r  less. A l a r g e r  e f f e c t  w i l l  r e s u l t  i f  the  o p t i c a l  thickness ,  the  

radiometer half-cone angle ,  o r  the  solar zen i th  angle ,  is  p a r t i c u l a r l y  

l a r g e ,  and e s p e c i a l l y  i f  s eve ra l  of the f a c t o r s  p e r t a i n  simultaneously. 

This conclusion w i l l  remain e s s e n t i a l l y  unchanged, regard less  of whether 

the  instrument i s  opera t ing  i n  a broad band or  a narrow band mode. 
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However, i f  m u l t i s p e c t r a l  e x t i n c t i o n  measurements a r e  made, with 

the  o b j e c t  of  s tudying  the  wavelength v a r i a t i o n  of the  aerosol  o p t i c a l  

th ickness ,  then  such r e s u l t s  may w e l l  contain s i g n i f i c a n t  e r r o r s .  

Programs designed f o r  t h i s  purpose,  c l e a r l y  should make allowance f o r  

t h i s  e f f e c t .  

Often,  t h e  o b j e c t  of such mul t i spec t r a l  e x t i n c t i o n  programs, is t h e  

determinat ion,  us ing  varying l e v e l s  o f  approximation, o f  t h e  aerosol  

s i z e  d i s t r i b u t i o n .  The s imples t  such approximation, t h a t  of e x t r a c t i n g  

only t h e  Junge power, V ,  r equ i r e s  e s s e n t i a l l y  no modif icat ion a t  a l l .  

Even more complicated algorithms may be  co r rec t ed  using the  r e l a t i v e l y  

s i m p l e  modi f ica t ions  discussed above. I n  view o f  t he  importance of  t h e  

e f f e c t s  d i scussed  i n  t h i s  paper ,  it i s  our opinion t h a t  a l l  r e t r i e v a l  

a lgori thms should be so modified, i n  order  t o  minimize such e r r o r s .  

4-63 



APPENDIX 4 A  

Here, an o u t l i n e  i s  g iven  of t h e  s t e p s  t aken ,  and t h e  approximations 

employed, i n  going from Eq. ( 2 6 )  t o  Eq. (33). 

F i r s t  cons ider  t h e  i n t e g r a t i o n  over  t h e  equatorial ang le ,  w. 

Col l ec t ing  a l l  t e r m s  which involve 9 (see Eq .  ( 9 ) )  w e  come t o  t h e  fo l lowing  

i n t e g r a l  : 

-1 f ( w  $ J , $ ~ )  z (cos  $ s  c o s  J, - s i n  4~~ sin V.J cos w )  

( A l a )  

Now if I/.J i s  s m a l l ,  which i t  should be f o r  a good photometer,  and 4, i s  n o t  

too l a r g e  (< 75 ) , then  w e  may expand f t o  second o r d e r  i n  $- (note  t h a t  

t h e  f i r s t  o r d e r  t e r m  w i l l  i n t e g r a t e  t o  zero when I i s  eva lua ted) -g iv ing  

0 

@ 

Afte r  t e d i o u s ,  b u t  s t r a igh t fo rward  manipulat ions,  I wmay now also be  eva lua ted  

t o  second o r d e r  i n  $, y ie ld ing  
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where 

(A41 
1 2 2 1 2 2 

g ( t ,Os)  = - 2 s ec  + s  - t sec  + s  ( t a n  9, + + 1 4 t2 t a n  9, sec 9 s  

and 

2 The approximation w e  now wish t o  make is  t o  ignore $ g ,  and a l l  higher  terms. 

Provided t h a t  n e i t h e r  nor 8 i s  too l a rge ,  t h i s  would appear t o  be a 

p e r f e c t l y  reasonable  s t ep .  

D S 

Note t h a t  an instrument w i t h  a sApall view-cone 

angle  may be used a t  l a r g e r  zen i th  angles  than one with a l a r g e r  view-cone 

angle ,  before  the  approximation breaks down. The approximation we thus  in tend  

t o  make i s  t o  w r i t e  

To  t e s t  t h e  accuracy of t h i s  approximation, w e  have evaluated E q .  ( A l l  

numerically,  and compared the  r e s u l t s  with those from E q s .  (A3) and ( A s ) ,  

f o r  $s = 30° (loo) 70°, $ = lo (lo) loo, and t = 0 ( 0 . 2 )  1 .0 .  

smaller  va lues  of 8 and $, Eq.  (A5) proved t o  be a h ighly  accurate  approximation 

t o  Eq .  ( A l )  , and Eq. ( A 3 )  proved t o  be extremely accura te .  A s  e i t h e r  $ OK $ 

apnroached t h e  l i m i t s  of t h e i r  a l l o t t e d  ranges,  t h e  accurac ies  of both E q .  (A31 

and E q .  ( A 5 1  s t a r t e d  t o  f a l l  off, and e spec ia l ly  ( a s  expected) when both l i m i t s  

were being approached. 

For the  

S 

S 

A s  an ind ica t ion  of t he  accuracy of E q .  (A5) ,Table  A 2  cOntairS t h e  Percentage 

e r r o r s  it e n t a i l s ,  f o r  a v a r i e t y  of ( I ~ - $ J  combinations. In  each case ,  w e  
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have l i s t ed  t h e  e r r o r  corresponding t o  t = 0 ,  which i s  inva r i ab ly  the  

l a r g e s t .  (Remember t h a t  we s t i l l  have an in t eg ra t ion  over y ( i . e . ,  t) t o  

perform. This w i l l  reduce t h e  a c t u a l  e r r o r s  involved, by an amount which 

w i l l  depend on T(y ).) The e r r o r s  involved i n  using Eq. ( A 3 )  a r e  not  t abu la t ed ,  

bu t  i n  m o s t  cases they a r e  lower by a decade o r  more. 

0 

When Eq. (A51  is  used in s t ead  of Eq. (All i n  Eq. (5)  , t h e  l a t te r  

reduces t o  

{Fp + FM) s i n  $ d$ (A6 1 

w h i c h  leads immediately to Eq. (12). 

2 
I f  the JI g term i s  r e t a ined ,  it is s t i l l  poss ib l e ,  a t  l e a s t  i n  p r i n c i p l e ,  

t o  perform the i n t e g r a t i o n  over a l t i t u d e .  However, t h e  in t eg ra t ion  over $ 

becomes much more complex, and nothing seems t o  be gained by t h e  inc lus ion  of 

these  terms. W e  po in t  ou t  though, t h a t  t he re  i s  some s l i g h t  resemblance 

between these  terms, and the  next  couple of terms i n  the  expansion of t h e  

exponent ia l  i n  Eq. ( 4 2 ) .  Thus t h e  approximation of ignoring $ g ,  and t h e  2 

approximation i n  going from Eq. (41) t o  Eq. (42 ) ,  should tend t o  cance l ,  

r a t h e r  than r e in fo rce ,  one another.  
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APPENDIX 4B 

Described here  i s  an a l t e r n a t e  de r iva t ion  of  t he  s c a t t e r i n g  co r rec t ion  

f a c t o r  R t o  o p t i c a l  ex t inc t ion  measurements, t h a t  fol lows Lhe approach 

descr ibed i n  Refs. 62 and 67. 

F i r s t ,  cons ider  ex t inc t ion  measurements i n  monodisperse aerosols .  

Due t o  t h e  f i n i t e  s i z e  of t h e  d e t e c t o r ,  some of t h e  l i g h t  s c a t t e r e d  by t h e  

p a r t i c l e s  w i l l  be  in t e rcep ted  by the  view cone, so t h a t  t h e  measured ex t inc-  

t i o n  c o e f f i c i e n t  ( B ' )  w i l l  d i f f e r  from the  t r u e  e x t i n c t i o n  c o e f f i c i e n t ,  8. 

Then one may d e f i n e  a co r rec t ion  f a c t o r ,  R ,  f o r  monodispersions as 

where ' 
and the  corresponding e r r o r  f a c t o r ,  E ,  a s  

is t h e  acceptance angle  of t h e  d e t e c t o r  and r is  the  p a r t i c l e  r a d i u s ;  D 

Although these  d e f i n i t i o n s  apply s t r i c t l y  only t o  ae roso l s  with r e a l  r e f r a c t i v e  

ind ices ,  they may e a s i l y  be extended t o  absorbing ae roso l s ,  a s  shown i n R e f .  62-  

For polydisperse  ae roso l s ,  these  two f a c t o r s  should be averaged over t he  

s i z e  d i s t r i b u t i o n  as w e l l  a s  the  path length.  

averaged co r rec t ion  f a c t o r  E is 

Thus the  s i z e  d i s t r i b u t i o n  

W 

(il + i,) n ( r )  d r  s i n  $ d$ - R=.-=LIIT B '  
Bk2 'D o 
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and the corresponding e r r o r  f a c t o r  i s  

A f u r t h e r  averaging over the path length  needs t o  be performed, t o  
A A 

y i e l d  E and E. 

along t h e  beam pa th ,  whereas i n  t h e  case of sun radiometry, f o r  a cons t an t  

acceptance h a l f  angle  J, t he  ae roso l  number dens i ty  v a r i e s  with a l t i t u d e .  

Then, w e  may def ine  t h e  al t i tude-averaged co r rec t ion  f a c t o r ,  E, as 

In  Ref. 67, we assumed t h a t  ae roso l  w a s  uniformly d i s t r i b u t e d  

D‘ - 

..4 - - 
with E = 1 - R. 

Although Eq. (B3) has been w r i t t e n  on the  assumption t h a t  t h e  t o t a l  

ae roso l  a l t i t u d e - s i z e  d i s t r i b u t i o n  i s  separable  ( i - e . ,  r l ( r ,y )  = n ( r )  p ( y ) ) ,  

t h i s  assumption i s  r e a l l y  unnecessary i n  our t rea tment ,  a s  we a r e  concerned - 
with a l t i t u d e  averaged r e s u l t s .  We may def ine  E, f o r  example, by 

which i s  nothing bu t  Eq. (36a) .  Here,use has  been made of Eq. (32)- 
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For n o t a t i o n a l  convenience, t he  b a r  (-) and t i l d e  (-) have both been 

omitted throughout t he  main body of t h i s  paper. 

should a r i s e ,  as  we s h a l l  always be concerned only  with the  a l t i t u d e -  

averaged polydisperse  co r rec t ion  and e r r o r  f a c t o r s .  

However, no confusion 
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SECTION 5 

REPPESENTATION OF AEROSOL S I Z E  D I S T R I B U T I O N  DATA BY ANALYTIC MODELS 

Even though atmospheric a e r o s o l s  are known t o  possess  a v a r i e t y  of  

shapes ,  t h e  d e s c r i p t i o n  of  t h e i r  p h y s i c a l  s t r u c t u r e  i s  immensely s i m p l i f i e d  

if they  are assumed t o  be s p h e r i c a l .  

a e r o s o l s  i s ,  i n  g e n e r a l ,  cont inuous and may cover  over  f o u r  decades i n  r a d i i ,  

namely, t o  20 pm (Ref. 71) . O f  t h e  b a s i c a l l y  fou r  ways i n  which t h e  

e m p i r i c a l  s ize  d i s t r i b u t i o n  (SD) d a t a  can be r e p r e s e n t e d ,  namely, t a b u l a r ,  

his togram, g r a p h i c a l  and a n a l y t i c a l  ( R e f .  771, t h e  l a s t  one i s  u s u a l l y  

employed due t o  t h e  f a c t  t h a t  t h e r e  e x i s t  r e g u l a r i t i e s  i n  t h e  g r o s s  s t r u c t u r e  

of atmospheric  a e r o s o l s  which e x h i b i t  behavior  s imilar  t o  t h a t  o f  a v a r i e t y  

o f  mathematical  func t ions .  An a n a l y t i c  f u n c t i o n g e n e r a l l y  encompasses i h  a 

smooth way t h e  main f e a t u r e s  o f  t h e  a e r o s o l  s t r u c t u r e .  

u n r e a l i s t i c  i n  i t s  smoothness, t h e  a n a l y t i c a l  r e p r e s e n t a t i o n  has  t h e  fo l lowing  

advantages ,  namely those  o f  convenient  a d j u s t a b i l i t y  t o  o b t a i n  a b e s t  f i t  t o  

t h e  exper imenta l  data;  compact r e p r e s e n t a t i o n  o f  t h e  dependent v a r i a b l e  ( t h e  

S D )  i n  t h e  form of  es t imated  parameters  of  t h e  f i t t e d  d i s t r i b u t i o n ;  cons t ruc-  

t i o n  o f  reasonable  and convenient  models; and, c a r r y i n g  o u t  paramet r ic  

modeling s t u d i e s  of  ae roso l  o p t i c a l  p r o p e r t i e s  i n  a sys t ema t i c  manner. 

The s i z e  spectrum o f  a tmospheric  

While admi t ted ly  

The success  of  t h e  a n a l y t i c  r e p r e s e n t a t i o n  approach depends upon t h e  

s e l e c t i o n  of  a n  appropr i a t e  mathematical  func t ion  t o  approximate t h e  a c t u a l  

s i z e  d i s t r i b u t i o n  d a t a .  This  may no t  always be p o s s i b l e  (Ref.  7 8 ) ;  o f t e n  a 

l i n e a r  sum o f  mathematical  func t ions  may provide a good r e p r e s e n t a t i o n .  

Thus, t h e r e  seems t o  be no " s p e c i a l "  a n a l y t i c  func t ion  t h a t  can be sa id  to 

be unique i n  r ep resen t ing  a e r o s o l s  SD's. The choice  of  t h e  func t ion  is  to  

some e x t e n t  d i c t a t e d  by t h e  modeler ' s  t a s t e .  However, u l t i m a t e l y ,  it i s  
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only  when t h e  f i t t e d  a n a l y t i c  func t ion  leads t o  r e s u l t s  t h a t  c l o s e l y  f i t  t h e  

experimental  o p t i c a l  ( s c a t t e r i n g / e x t i n c t i o n )  d a t a  and a t  the same t i m e  f a l l s  

w i t h i n  t h e  t y p i c a l  phys i ca l  domain of a tmospheric  aerosols, t h a t  t h e  a n a l y t i c  

f u n c t i o n  may be assumed t o  r e p r e s e n t  t h e  a e r o s o l  S D .  

This  paper  summarizes t h e  main r e s u l t s  of  a pa rame t r i c  s tudy  of  e i g h t  

mathematical  f u n c t i o n s ,  wi th  up to f o u r  parameters ,  t h a t  a re  commonly used 

as models f o r  r ep resen t ing  a e r o s o l  s i z e  d i s t r i b u t i o n s ;  and d e s c r i b e s ,  as 

an example, t h e  method o f  ob ta in ing  b e s t - f i t  parameter e s t i m a t e s  of  one of 

t h e s e  models. Others  are d i scussed  i n  d e t a i l  i n  R e f .  37 .  I n  this connect ion  

this paper  p r e s e n t s  a s e t  o f  g raph ica l  p l o t s  d e p i c t i n g  the paramet r i c  

behavior  of t h e  model. These p l o t s  are a subset of t h e  catalog of plots  ( f o r  

e i g h t  S D  models) desc r ibed  i n  R e f .  3 7 -  

(i) T e r m i n o l o g y  f o r  Aerosol S i z e  Dis t r ibu t ions  

The p h y s i c a l  s t r u c t u r e  o f  ae roso l s  (a tmospheric  o r  a r t i f i c i a l )  can  be 

r ep resen ted ,  i n  g e n e r a l ,  i n  terms of t h e  number, area,  volume o r  m a s s  of 

a e r o s o l  p a r t i c l e s  p e r  u n i t  volume pe r  u n i t  r a d i u s  a t  r a d i u s  r .  However, i n  

t h i s  paper  t h e  d i s c u s s i o n  w i l l  be  r e s t r i c t e d  t o  t he  S D  r e p r e s e n t a t i o n  i n  

terms o f  t h e  p a r t i c l e  number and r a d i u s ,  so t h a t  only t h e  radius-number 

d i s t r i b u t i o n ,  l o g  radius-number d i s t r i b u t i o n  and cumulative s i z e  d i s t r i b u t i o n  

w i l l  be cons idered .  Thei r  d e f i n i t i o n s  fo l low those  g iven  i n  Ref. 3 7 .  (The 

dependence o f  t h e  S D  on f a c t o r s  such as ,  a l t i t u d e ,  and composition, e t c . ,  

w i l l  b e  cons idered  h e r e . )  

- 3  -1 
T h e  r a d i u s - n u m b e r  d i s t r i b u t i o n  n ( r ) ,  ( c m  Pm 1 is  def ined  as t h e  

3 number of p a r t i c l e s  p e r  u n i t  volume ( c m  w i th in  a u n i t  r ad ius  range a t  r 

measured i n  Pm. Thus, 

(1) 
-3  -1 

Pm n ( r )  = -dN(r) / d r  = dNU(r)  / d r ,  
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where N ( r )  [ N  ( r ) ]  is t h e  cumulative ove r s i ze  [undersize]  d i s t r i b u t i o n  

func t ion  (Ref. 1). 

U 

T h e  l o g  rad ius -number  d i s t r i b u t i o n  n , (r) ,  (an-*), i s  def ined by 

n L ( r )  = -dN(r) / d(loglOr) = 2.3026 r n ( r ) ,  (cm -3  
) .  2) 

Junge found it convent ient  t o  handle t h e  w i d e  range of  atmospheric ae roso l  

s i z e  d i s t r i b u t i o n  d a t a  by p l o t t i n g  n ( r )  as a func t ion  o f  r ,  on a log-log 
L 

s c a l e .  This method of  p l o t t i n g  has t h e  advantage t h a t  it rep resen t s  t h e  

p a r t i c l e  concent ra t ion  as wel l  as t h e  s i z e  d i s t r i b u t i o n .  

The  c u m u l a t i v e  s i z e  d i s t r i b u t i o n  r ep resen t s  t he  t o t a l  number of p a r t i c l e s  

3 p e r  an t h a t  have r a d i i  g r e a t e r  [ l e s s ]  than r ,  i s  represented by N(r) 

[N (r)l  and i s  c a l l e d  t h e  cumulative overs ize  [undersize]  d i s t r i b u t i o n  

func t ion  (Ref. 7 9 ) .  In  essence 

U 

( r )  
- 3  

n ( r ' )  d log (r'), ( c m  ) (3b) L 10 
N ( r )  = I' n ( r " ) d r ' '  = j-rgl0 

U 

I n  t h i s  paper ,  only the  cumulative overs ize  d i s t r i b u t i o n  (COSD) w i l l  be 

d iscussed .  

of t he  p a r t i c l e s .  

(ii) D i s t r i b u t i o n  F u n c t i o n s  and Selection C r i t e r i a  

Note t h a t  N ( 0 )  would therl be the  t o t a l  number dens i ty  ( ~ m - ~ )  

Given some empir ica l  aerosol  s i z e  d i s t r i b u t i o n  d a t a ,  t h e  problem is  

t o  f i n d  an a n a l y t i c  funct ion t h a t  w i l l  m o s t  c l o s e l y  represent  t h i s  da t a .  

Examples of  mathematical func t ions  of up t o  two parameters a r e  the  normal, 

gamma, binomial and exponent ia l  d i s t r i b u t i o n  funct ions:  and of  those  with 

more than two parameters a r e :  The Weibull, Johnson and Pearson d i s t r i b u t i o n  

families. These d i s t r i b u t i o n s  a r e  discussed i n  d e t a i l  i n  many books on 
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p r o b a b i l i t y  (see R e f .  7 7 ) .  These func t ions  admit almost every type  of 

p r o b a b i l i t y  d i s t r i b u t i o n ,  except  composite d i s t r i b u t i o n s  made up of several 

d i s t i n c t  popu la t ions ,  such as multi-modal d i s t r i b u t i o n s .  I n  a d d i t i o n ,  t h e r e  

is another  v e r s a t i l e  d i s t r i b u t i o n ,  r e f e r r e d  t o  as t h e  gene ra l i zed  d i s t r i b u t i o r  

func t ion  (GDF) ( R e f s .  80 and 81) which i s  de r ived  from the Wood-Saxon 

func t ion .  

I n  t h e  s e l e c t i o n  of an  a n a l y t i c  func t ion  t o  r e p r e s e n t  t h e  s i z e  d i s t r i b u -  

t i o n  n ( r ) ,  t h e  fo l lowing  c r i te r ia  must be taken  i n t o  account:  

1. 

2. I t  i s  e a s i l y  i n t e g r a b l e  over  r; 

3 .  I t  can r e p r e s e n t  t he  main f e a t u r e s  of the gross structure 

The func t ion  i s  n o t  s i n g u l a r  f o r  0 < r ( 0 ” ;  

of the a e r o s o l s  by a minimum number of a d j u s t a b l e  parameters. 

(iii) S i z e  Di s t r ibu t ion  Models and Their M a t h e m a t i c a l  P r o p e r t i e s  

Analy t i c  models s u i t a b l e  f o r  r ep resen t ing  a e r o s o l  s i z e  d i s t r i b u t i o n s  

inc lude  the fo l lowing  mathematical  func t ions :  

1. Power Law D i s t r i b u t i o n  (PLD) 

2 .  Regular ized Power Law D i s t r i b u t i o n  (RPLD) 

3 .  Modified Gamma D i s t r i b u t i o n  (MGD) 

4 .  Inve r se  Modified G a m m a  D i s t r i b u t i o n  ( I M G D )  

5.  Log-normal D i s t r i b u t i o n  (LND) 

6 .  Normal D i s t r i b u t i o n  (ND) 

7 .  General ized D i s t r i b u t i o n  (GD) 

8 .  Power Law Generalized D i s t r i b u t i o n  (PLGD) 

The express ions  and t h e  mathematical  p r o p e r t i e s  of  t h e  func t ions  

w i l l  be  descr ibed  i n  t h i s  s e c t i o n .  Here t h e  model d i s t r i b u t i o n s  r e p r e s e n t  

t h e  radius-number d i s t r i b u t i o n  n ( r )  , from which t h e  corresponding express ions  

f o r  n ( r )  and N ( r )  a r e  der ived .  The p r o p e r t i e s  o f  i n t e r e s t  a r e :  t h e  mode 
L 
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r a d i i  f o r  n ( r )  and n , ( r ) ;  lower l i m i t ,  a symptot ic ,  and paramet r ic  behavior  o f  

t h e  f u n c t i o n s ;  and t h e  k t h  moment o f  t h e  models. The mode r ad ius  r €or  

n ( r )  i s  g iven  by t h e  s o l u t i o n  o f  

m 

and t h a t  f o r  n,(r) , by t h e  s o l u t i o n  of 

d n L ( r )  

d r  = o  

t he  k t h  moment i s  g iven  by: 

5 = 1 rk n ( r ) d r  
43 

0 

The moments are u s e f u l  f o r  c a l c u l a t i n g  p r o p e r t i e s  of t h e  d i s t r i b u t i o n  such 

as number d e n s i t y  ( N ( 0 ) )  , average r a d i u s  ( r )  , average area ( A )  and average 
- - - 

volume (v) of a e r o s o l  p a r t i c l e s  i n  a u n i t  volume, as shown here :  

r = M / M  
2 0  

= 'TTM /M 
2 0  

- 4  V = - 'TT M /M 
3 3 0  

I n  a l l  S D  models, a d j u s t a b l e  parameters  are r ep resen ted  by pl ,  p2 ,  P3, 

..., where p1 i s  t h e  s c a l i n g  parameter and i s  chosen so t h a t  t h e  maximum 

value  of  t h e  func t ion  i s  u n i t y .  

A .  Model 1: T h e  Power Law (PL) Mode l .  This  model, known as Junge power 

l a w ,  w a s  proposed by Junge t o  r ep resen t  h i s  c o n t i n e n t a l  a e r o s o l  S D  d a t a  and 

i s  g iven  by 

-p 2 
2 n ( r )  = p1 r , rl r C r 

o r ,  a l t e r n a t ? l y ,  by 

- -  
> I  



I t  has a COSD of t h e  form 

1-P2 - ( r  

Junge used 0 .01  I.lm f o r  

1-P2 
2 1 ,  rl ( r  G r  

2 r 

r and 1.0 pm f o r  r2; but  o the r  values  could 
1 

be used. 

The k th  moment f o r  t h e  d i s t r i b u t i o n  i s  given by 

(4d) 

This model becomes s ingu la r  a t  r = 0 ,  if r 1 = 0 ;  has a l l  its moments 

i n f i n i t e  if r 

m o d e l  may no t  always r ep resen t  a r e a l  s i t u a t i o n ,  and does not  m e e t  the  selectio: 

c r i t e r i a ,  i t  i s  popular ly  used a s  i t  r e a d i l y  g ives  a n a l y t i c a l l y  t r a c t a b l e  

r e s u l t s .  The model i s  graphica l ly  presented i n  R e f .  37.  

B .  Model  2 .  T h e  R e g u l a r i z e d  Power Law ( R P L )  M o d e l .  I n  order  t o  e l imina te  

t h e  s i n g u l a r i t y  a t  r = 0 t h a t  occurs i n  Model 1, without los ing  i t s  power 

law behavior a t  l a r g e  r ,  one may use a regular ized  form of the  power l a w ,  

= 0 and r 1 2 
= 03; and has no mode r ad ius  (rm).  Even though t h i s  

The mode rad ius  LS given by 

and t h e  maximum value i s  

The l i a i t i n g  behavior of t he  funct ion i s  a s  follows 
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The log r a d i u s  number d i s t r i b u t i o n  is  
D 

2.3 Pl(r/P2) - 3  

Its maximum va lue  occurs  a t  

so 

Im r 

t h a t  

= P2 (P*-l) 

nL(rh)  = 2.3 

The l i m i t i n g  behavior f o r  t h i s  funct ion is as fol lows,  

The l i m i t i n g  behavior €or  t h i s  form of t h e  d i s t r i b u t i o n  
is as fo l lows  

(5h)  

(51) 

As 

and, as 

r + 0, n ( r )  E 2 . 3  p1 ( r /p2 )  

r + ml n ( r )  - 2 . 3  p1 ( r /p2 )  
-P3 ( P p  

The COSD i s  given by (Ref. 81, N o .  3.194/2 and 9.121/1). 

A s  

(51) -P3 (p4-1) 
( r/p2 1 

p1 
and as r * ==, N ( r )  

P (P -1) 3 4  
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The moments M f o r  t he  RPL a r e  given by (Ref. 82, No. 3.194/3 and 

Ref. 83,  p. 103): 

where r is t he  gamma funct ion .  

The parameter p has the  main e f f e c t  on mode r ad ius ,  being a mul t ip l i ca -  

t i v e  f a c t o r ,  while p and p con t ro l  t h e  p o s i t i v e  and negat ive g rad ien t s ,  and 

hence po lyd i spe r s i ty .  The parameter p c o n t r o l s  the  p o s i t i v e  g rad ien t  whi le  

both p3 and p 

presented i n  F igs .  5A.1 - 5A.3. 

Ref. 37. 

2 

3 4 

3 

inf luence  the  negative g rad ien t .  The model i s  g raph ica l ly  
4 

A more complete s e t  of graphs is given i n  

C .  Mode l  3 :  M o d i f i e d  Gamma D i s t r i b u t i o n  (MGD) M o d e l .  Model 3 i s  the  

modified g a m a  d i s t r i b u t i o n  funct ion.  Deirmendjian (Ref. 40)  has shown t h a t  

t h i s  func t ion  can be used t o  descr ibe  var ious types of  r e a l i s t i c  ae roso l  

d i s t r i b u t i o n s .  For in s t ance ,  by assigning d i f f e r e n t  values  t o  the  parameters 

p2 and p one ob ta ins  models such a s  Haze H I  Haze M ,  Haze L ,  Cloud C3, e t c .  
4 

Its mode r a d i u s  i s  
1/P4 

m =[&I 
and i t s  maximum value i s  

(6b) 

The l i m i t i n g  behavior of t he  d i s t r i b u t i o n  i s  as follows 

r + 0 ,  n ( r )  = ? r 

r * 00, n ( r )  * 0 a s  p exp ( -p3r  

1 
A s  

and a s  1 

(6c) 

6d) 

6e 1 
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REPRESENTATION OF AEROSOL SIZE DISTRIBUTION 

I- 4 

F = 15.0 
= 2.m 
= 3.00 
=1.725€-02 = 6.71 

= 10.0 
=2.588E-G2 = LI.37 
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5 - 178-02 
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= 1.m = .m 
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= .a 
= -863 
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= ,103 = 2.59 
=Y . WE-@ 

=S .m-02 = 5.18 
=2.236€-02 

=3 .oaX-o2 
= 8.63 
=I. .3YzE-@ 

F I G .  5A.1. Model 2 ( R e g u l a r i z e d  P o w e r  Law) for  n(r) . Parameter  

= 2.0, p* = 3.0. 
p 3  S e t  2.1: p v a r i a b l e ,  

2 
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FIG. 5A.2 
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. Model 2 for n(r). Parameter Set 2.3: p3 variable, 

= 5.0, p 4  = 3.0. p 2  
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FIG. 5 A . 3 .  Model 2 for n(r). Parameter  2 .4:  p v a r i a b l e ,  p 2  = 5 . 0 ,  4 
p 3  = 3 . 0 .  
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The log radius-number d i s t r i b u t i o n  i s  g iven  by 

P2+1 p4 
n,(r) = 2.3 P l r  exp (-p3r 1 

I t  has  a m a x i m u m  va lue  a t  

24 = (P2+1)/P4 
r = ( P ~ ~ / P ~ )  "" where p 

l m  

The l i m i t i n g  behavior  of t h e  func t ion  i s  as follows, 
P2+1 

As r * 0 ,  n,(r)  z 2.3 p1 r (61) 

and as r * ~ 3 ,  n,(r)  * 0 as  2.3 p exp(-p3r  p4 1 1 

The COSD i s  given by (Ref. 8 2 ,  N o .  3.381/3),  

The l i m i t i n g  behavior  f o r  t h e  COSD is as fo l lows  (Ref.  84 ,  6.5.3, 
6.5.12, 6.5.32) , 

AS r * 0 ,  N ( r )  z p1 ( I ' ( P ~ ~ )  - e 3  '2 4 rP2+l/P2,) /D4P3 p24 (6L) 

(6m) 
P2-P4+l 

r exp (-p3r and, as  r * m, N ( r ) -  - p1 

p3p4 

The kth moment f o r  t h e  d i s t r i b u t i o n  is given by (Ref. 8 2  NO. 
3.381/4) , 
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4 The parameter p c o n t r o l s  t he  mode rad ius  and the  parameters p2  and p 3 

c o n t r o l  t he  po lyd i spe r s i ty .  The parameter p determines the  l i m i t i n g  behavior  

a s  r -+ 0 while  t h e  parameter p4 determines t h e  l i m i t i n g  behavior as r +. O0. 

The model i s  g raph ica l ly  presented i n  Ref. 37. 

2 

D .  Model 4 .  Inverse M o d i f i e d  Gamma D i s t r i b u t i o n .  This d i s t r i b u t i o n  has 

the  same form as Model 3 except  t h a t  t h e  inve r se  r ad ius  i s  used. This 

r e s u l t s  i n  an  e q o n e n t i a l  f a l l - o f f  a t  t h e  small s i z e  and the  p o w e r  l a w  

behavior a t  t h e  la rge- rad ius  end. Twomey ( R e f .  85) suggests  t h i s  form Of t h e  

modified gamma d i s t r i b u t i o n  f o r  dry ae roso l s .  

The r a d i u s  number d i s t r i b u t i o n  is  given by 

Its mode r ad ius  i s  given by 

and t h e  maximum value i s  

The  l i m i t i n g  behavior of t h e  d i s t r i b u t i o n  is as fo l lows ,  

The log-radius  number d i s t r i b u t i o n  i s  given by 

Its mode r ad ius  i s  given by 

1/P4 
r = (P3/P42) , P42 = (P2-1)/Pq l m  
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The l i m i t i n g  behavior  of t h e  d i s t r i b u t i o n  is  as fo l lows ,  

- (P2- l )  
and, as r -P OD,  n,(r)  - 2.3 plr 

The COSD i s  g iven  by (Ref. 82,  N o .  3.381/1) 

where y i s  the incomplete gamma funct ion .  

The l i m i t i n g  behavior  of t h i s  d i s t r i b u t i o n  i s  as follows ( R e f .  84, 

No. 6.1.1, 6.5.2, 6.5.12). 

1 
P (P42- l )  

r -+ Q), N ( r )  - P1 r 

r 4  
- (P2-l)  

and, as / (Pz- l )  

The moments o f  t h e  d i s t r i b u t i o n  are g iven  by (Ref. 82,  NO. 3.38114) 

The parameters p and p 2 4 c o n t r o l  t h e  r a t e  o f  f a l l - o f f  a t  l a r g e  and s m a l l  

r a d i i ,  r e s p e c t i v e l y ,  and hence c o n t r o l  t h e  p o l y d i s p e r s i t y .  The parameter  p 3 

c o n t r o l s  t h e  mode r a d i u s .  This  model is g r a p h i c a l l y  presented  i n  Ref. 37. 

E. Model 5. The Log Normal Dis tr ibut ion  (LND) Model. The log normal 

d i s t r i b u t i o n  g e n e r a l l y  provides  a b e t t e r  d e s c r i p t i o n  o f  p a r t i c l e  s i z e  

d i s t r i b u t i o n  (d iscussed  l a t e r  on) because p a r t i c l e  s i z e s ,  l i k e  many n a t u r a l l y  
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occurr ing  popula t ions ,  are o f t e n  asymmetric. I n  t h i s  d i s t r i b u t i o n  it i s  l n r  

r a t h e r  than r which is  normally d i s t r i b u t e d .  A n  e x c e l l e n t  d i scuss ion  of  t h i s  

d i s t r i b u t i o n  is  given by Kerker ( R e f .  78 ) .  

The r ad ius  number d i s t r i b u t i o n  is given by 

The mode r a d i u s  i s  

2 = m = P2 exP(-P3 1 

and i t s  maximum value is  

The parameter p2 i s  the  geometric mean o f  r and lnp2  is  the  mean of  

nr .  N o  s e r i e s  expansion could be found f o r  t h e  l i m i t i n g  behavior of t h i s  

d i s t r i b u t i o n  which tends r ap id ly  t o  zero a t  both ex t r emi t i e s .  

The log  radius-number d i s t r i b u t i o n  i s  

I t  has a maximum a t  

‘lm = ‘2 

so t h a t  

N o  s e r i e s  expansion could be found €or the  l i m i t i n g  behavior of t h i s  

d i s t r i b u t i o n  which tends r ap id ly  t o  zero a t  both ex t r emi t i e s .  

The COSD i s  given by (Ref. 8 2 ,  p. 183) 

l n r  - lnp2 
N ( r )  = - 2 
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where e r f c  i s  t h e  complementary e r r o r  funct ion.  

The l i m i t i n g  behavior of t h i s  funct ion is  as follows 

AS r * 0 ,  N ( r )  + p1 

and, as r + O D I  N ( r )  * 0 

The parameter p i s  the  median f o r  the  COSD, i . e . ,  2 

N(p2)/N(0) = 0.5 

The moments f o r  t h e  d i s t r i b u t i o n  a r e  given by (Ref. 82,  N o .  3.323/2) 

I 

The parameter p con t ro l s  t h e  po lyd i spe r s i ty  of t he  model and t h e  parame 3 

p2 has a m u l t i p l i c a t i v e  e f f e c t  on mode rad ius .  

presented i n  Ref. 37. 

F. Model 6 .  T h e  Normal  D i s t r ibu t ion  ( N D )  . The normal d i s t r i b u t i o n  is  a 

symmetric d i s t r i b u t i o n  which i s  f i n i t e  a t  r = 0 and, t hus ,  s t r i c t l y  speaking 

cannot be used t o  represent  aerosol  SDs a t  small  r .  

r ep resen t  SDs a t  o t h e r  ranges of r ,  and s ince  i t  is  a Gaussian d i s t r i b u t i o n ,  

which has  w e l l  known p rope r t i e s ,  such a model can be very use fu l  i n  c e r t a i n  

This model is  g raph ica l ly  

I t  can be used t o  

app l i ca t ions .  I t  i s  given by 

D 2 
-1  1 r-P2 } 

n ( r )  = fi P3 exp { -  T [ - -  
Its mode rad ius  i s  given by 

r m = p2 

and t h e  maximum value i s  

iJ, 

5 -16 



N o  series expansion could be found f o r  t he  asymptotic behavior of  t h i s  func t ion  

which tends r a p i d l y  to  zero.  

The l o g  radius-number d i s t r i b u t i o n  is given by 

2 2.3 p1 r 
n,(r) = 

exp 1- + 17-1 1 fi P3 

Its mode r a d i u s  is given by 

r -  - P2 + Jp22 + 4 P3L 
l m  

2 

and t h e  m a x i m u m  value i s  

2 

nL(rlm) = (9g) 

The l i m i t i n g  behavior of t he  d i s t r i b u t i o n  i s  as follows 

2.3 p , r  
I A S  r -+ 0 ,  n ( r )  = 

6 P3 
L 

and, as r -t Oof n, ( r )  + 0 

The COSD is given by ( R e f .  86,  p .  183) 

N ( r )  = - p1 e r f c  I?] 
2 

The l i m i t i n g  behavior of  t he  d i s t r i b u t i o n  is a s  follows (Ref. 86,  

p .  183) 
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The moments of t h e  d i s t r i b u t i o n  are g iven  by (Ref. 82,  N o .  3.462/1). 

M k =  

where D -k-1 

I n  the 

is a parabo l i c  cy l inde r  func t ion .  

normal d i s t r i b u t i o n ,  the parameter p c o n t r o l s  t h e  mode r a d i u s  2' 

and t h e  parameter p c o n t r o l s  t h e  p o l y d i s p e r s i t y .  The model i s  g r a p h i c a l l y  

p re sen ted  i n  Ref. 37. 

G .  Model 7.  T h e  G e n e r a l i z e d  D i s t r i b u t i o n  F u n c t i o n  ( G D F )  . This d i s t r i b u t i o n  

is  f i n i t e  a t  r = 0 and, t hus  does no t ,  s t r i c t l y  speaking,  r e p r e s e n t  p a r t i c l e  

s i z e  d i s t r i b u t i o n s  a t  small  z .  However, it i s  a v e r s a t i l e  func t ion  wi th  a 

wide v a r i e t y  o f  a p p l i c a t i o n s ,  inc luding  a l t i t u d e  d i s t r i b u t i o n s  (Refs.  1 and 

801, and is t h e r e f o r e  included here  as a p o t e n t i a l  r e p r e s e n t a t i o n  of a e r o s o l  

SDs. 

3 

The radius-number d i s t r i b u t i o n  i s  g iven  by 

Its mode r a d i u s  is given by 

r = P3 In P2 m 

and t h e  maximum is 

L 
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The l i m i t i n g  behavior  of t h e  d i s t r i b u t i o n  i s  as fo l lows  
P,-1 

(10e) 2 
and, as r + a, n ( r )  + 0 as P1(1+p2) exp(-  r /p3)  

The  log radius-number d i s t r i b u t i o n  i s  g iven  by 

n,(r) - 2.3 p1 ( l + p 2 I 2  r exp(r /p3)  / (p2  + e x p ( r / p 3 ) )  
2 

(10f )  

Its mode r a d i u s  r i s  g iven  by t h e  s o l u t i o n  of  t h e  equat ion  Im 
p2(1  + r / P  = (rlm/P3 - 1) exp (rh/P3) (109) l m  3 

and t h e  maximum is g iven  by 

nL(rlm) = 2.3 P 1 (l+PZ) 

The l i m i t i n g  behavior  of t h e  d i s t r i b u t i o n  i s  as fo l lows  

2 
As r * 0, n ( r )  2 . 3  p1 (1+p2) r 

2 
and, as r + a, n ( r )  + 0 as 2.3 p, (l+p,) exp(-r /p3)  

The COSD i s  g iven  by 
p1 (1+P2) 2 D  - 3  

N ( r )  = -- 

The l i m i t i n g  behavior  of t h e  

I L 

i s t r i b u  ion  is a 

and, as  r * a, N ( r )  + 0 as P 1 3  P (1+p2IL exp(-r /p3)  

f 11 W 

(101) 

The a n a l y t i c  express ion  for t h e  moments of  t h e  d i s t r i b u t i o n  could n o t  be 

eva lua ted .  

The parameter  p can be considered a s  a scale r a d i u s  and the  parameter  

For p2 = 0 t h e  d i s t r i b u t i o n  becomes an  

3 

p2 determines the  type of func t ion .  

exponen t i a l ,  and for s m a l l  p 

t han  t h e  exponent ia l .  

d i s p e r s i t y  of t h e  func t ion  inc reases .  

Ref. 37. 

t h e  func t ion  i n i t i a l l y  f a l l s  off more s lowly  2 

As t h e  parameter p i n c r e a s e s ,  t h e  spread  o r  poly- 3 

The model i s  g r a p h i c a l l y  presented  i n  
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H. Model 8. Power Law G e n e r a l i z e d  D i s t r i b u t i o n  Funct ion  (PLGDF) . T h i s  model 

is a versat i le  f u n c t i o n  which is m o s t  u s e f u l  when t h e  d a t a  t o  be f i t t e d  have  

broad  peaks.  The radius-number d i s t r i b u t i o n  is  g i v e n  by 

There i s  no a n a l y t i c  e x p r e s s i o n  for t h e  mode radius .  

The l i m i t i n g  b e h a v i o r  of t h e  d i s t r i b u t i o n  i s  as follows 

- ( p 4 + l )  
and,  as r -t O0, n ( r )  - P1 r 

The l o g  radius-number S D  i s  given by 

There i s  no a n a i y t i c  e x p r e s s i o n  f o r  t h e  mode r a d i u s .  

The l i m i t i n g  b e h a v i o r  of t h e  d i s t r i b u t i o n  is as fo l lows  

p4 
r * 0 ,  n (r) * 0 as 2.3 p exp ( -p2/ r  L 1 A s  

-p4 
and, as r + 03, n,(r)  - 2.3 p 1 r 

The COSD i s  g iven  by 

P1 Iexp  ( P 2 h  
N ( r )  = 

p2p4 [1+p3 Eexp (p2 /r  p4)  -111 

The l i m i t i n g  behavior  o f  t h e  d i s t r i b u t i o n  i s  as f o l l o w s  
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The moments, o t h e r  than  t h e  ze ro th  moment ( N ( O ) ) ,  cannot  be c a l c u l a t e d  

f o r  t h i s  d i s t r i b u t i o n .  However, t h e r e  i s  a s p e c i a l  form of  the  func t ion ,  

r e f e r r e d  to  as Model 8B, f o r  which h ighe r  moments can be calculated,  b u t  it 

has  no a n a l y t i c  form f o r  t h e  COSD. The radius-number S D  f o r  t h i s  f u n c t i o n  

is  g iven  by 

Its mode r a d i u s  i s  obta ined  from t h e  s o l u t i o n  of t h e  equat ion .  There i s  

no a n a l y t i c  expres s ion  f o r  t h e  mode r a d i u s .  

The l i m i t i n g  behavior  o f  t h i s  d i s t r i b u t i o n  i s  as follows 

AS r + 0 ,  n ( r )  + 0 as p1 exp(-p2/r  

-p4 and,  as r * 0 0 ,  n ( r )  - p1 r 

The log  radius-number d i s t r i b u t i o n  i s  given by 

There i s  no a n a l y t i c  express ion  f o r  t h e  mode r ad ius .  

The l i m i t i n g  behavior  of t h e  d i s t r i b u t i o n  i s  as follows 

As r + 0, n,(r)  -+ 0 as  2.3 p exp(-p2/ r  2 1 1 

- (?p 
ar,d, a s  r + 33, n,(r)  - 2 . 3  p r 1 
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The moments f o r  t h i s  d i s t r i b u t i o n  a r e  given by (Ref. 86) 

p4- ( k + l )  
> k + l .  2 p4 where p = 4k 

The parameter behavior f o r  both func t ions  ( E q s .  

2 

( l l a )  and (12a)) is 

similar .  The parameter p con t ro l s  t he  r a t e  of  f a l l - o f f  a t  s m a l l  r a d i i  

where t h e  parameter p con t ro l s  the rate of f a l l - o f f  a t  l a r g e  r a d i i .  The 

parameter p c o n t r o l s  t h e  spread of t h e  d i s t r i b u t i o n ,  t h e  breadth of t h e  

peaks increas ing  with l a r g e  values  of p3. 

i n  Ref. 37. 

(iii) Graphical R e p r e s e n t a t i o n  of S i z e  D i s t r i b u t i o n  Models 

4 

3 

The model i s  graphica l ly  presented  

The parametr ic  behavior of  a s i z e  d i s t r i b u t i o n  model can be i l l u s t r a t e d  

g raph ica l ly  by p l o t t i n g  the  s i z e  d i s t r i b u t i o n s  corresponding t o  seve ra l  values 

of  one of  t he  parameters on the  same graph, while o t h e r  parameters remain 

cons tan t .  A n  example of  t he  parametric v a r i a t i o n  o f  n ( r )  i n  the  case of Model 

i s  given i n  Figs .  S A . l  through 5A.3. A complete ca t a log  of p l o t s  i l l u s t r a t i n g  

the  parametr ic  behavior of n ( r ) ,  n L ( r ) ,  and N ( r )  f o r  a l l  of  t he  e i g h t  models 

i s  given i n  Ref. 37. 

For each s e t  of p l o t s  i n  Figs .  5 A . 1  through 5A.3, t he  values  of t h e  

four  parameters (p1, ..., p4) a r e  given f o r  the f i r s t  p l o t ,  along with t h e  mod 

r ad ius  r m .  For subsequent d i s t r i b u t i o n s  only the  parameter being va r i ed ,  the  

sca l ing  parameter p i  and the  mode r ad ius  a r e  given. The sca l ing  parameter 1s 

chosen here  such t h a t  t he  d i s t r i b u t i o n  maximum i s  equal t o  one. 
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(iv) Determination of Model Parameters from Plots 

The graphica l  ca t a log  of  p l o t s  can be e a s i l y  used t o  est imate  the  va lues  

of  t h e  d i f f e r e n t  parameters f o r  s i z e  d i s t r i b u t i o n  measurement da t a .  This i s  

done by f i r s t  p l o t t i n g  t h e  da t a  on t h e  t ransparency of a blank log-log 

graph which has  t h e  same x-y scale as t h e  graphs i n  t h e  ca ta log;  then after 

s e l e c t i n g  a s u i t a b l e  model, overlaying t h e  d a t a  transparency on the  parametr ic  

p l o t s ,  one a t  a t i m e ,  t o  dztermine which value of t h e  p l o t s  gives  the  b e s t  fit  

t o  t h e  d a t a .  

V e r t i c a l  t r a n s l a t i o n  o f  t he  t ransparency relative t o  the  parametr ic  

p l o t  will gene ra l ly  be necessary because the  range of values  covered 

by t h e  experimental  d a t a  w i l l  d i f f e r  from t h a t  of t h e  parametr ic  p l o t .  

Horizontal  t r a n s l a t i o n  may a l s o  be necessary i f  t h e  parameter being 

determined con t ro l s  t he  f a l l - o f f  as r + 0 or  r + m o r  t h e  curvature  near  

t h e  peak. Horizontal  t r a n s l a t i o n  cannot be used i f  t he  parameter con t ro l s  

the  l o c a t i o n  of the  mode r ad ius .  

Graphical determinat ion of  model parameters can be i l l u s t r a t e d  using 

Mdoel 2 t o  r ep resen t  Junge's da t a  (F ig .  5.2). Model 2 was chosen because, 

s i m i l a r  t o  t h e  data,  it has a power l a w  fa l l -off  as 1: + 03.  

The Junge d a t a  w a s  p l o t t e d  on a t ransparency which w a s  overlayed on 

Fig.  5A.3 and then t r a n s l a t - d  v e r t i c a l l y  u n t i l  t he  d a t a  po in t s  a s  l a rge  r 

(r >> mode r ad ius  rm) coincided with one of  t h e  ca t a log  p l o t s ,  i n  t h i s  

case t h a t  corresponding t o  p4 = 2 . 0 ,  thus  the  combination p3 = 3.0, 

p4 = 2 . 0 ,  thus  the  combination p3 = 3.0 ,  p4 = 2.0 f i t s  the  s lope  of the  

C w e  a s  r + O 0 .  
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Since t h e r e  a r e  only a few da ta  f o r  s m a l l  r (r << rm) , concentrate  

on the  region around the  peak i n  determining p3. The transparency w a s  

overlayed on Fig.  5A.2 and t r a n s l a t e d  v e r t i c a l l y  and ho r i zon ta l ly  u n t i l  

t h e  curve which b e s t  matched t h e  d a t a  i n  the  reg ion  of the  peak w a s  

found. 

o f f  too s t e e p l y  as r + O0. 

and p4 w e r e  3.0 and 2.0, r e spec t ive ly ,  which g ives  a s lope  of  -4 when 

s u b s t i t u t e d  i n  -11 + p3(p4 - 111 
a va lue  of 2.5 is  needed f o r  p4. 

I n  t h i s  case it turned o u t  t o  correspond t o  p3 = 2.0, which fa l ls  

Remembering t h a t  t h e  i n i t i a l  es t imates  f o r  p3 

(see Eq. 5e) w e  s e e  that fo r  p2 = 3.0, 

The f i n a l  parameter t o  be determined f r o m  the plots  is p2, which 

con t ro l s  t h e  m o d e  r a d i u s  rm. 

on Fig.  5A.1 and t r a n s l a t i n g  v e r t i c a l l y  u n t i l  t h e  d a t a  m a x i m u m  coincided 

with 1.0 on t h e  v e r t i c a l  p l o t  s ca l e .  

This i s  done by overlaying t h e  transparency 

This showed t h a t  p2 < 0.05. 

S u b s t i t u t i o n  o f  t he  mode r a d i u s ,  6.5 X lo-’, and t h e  es t imates  f o r  p3 

and p4 i n  E q .  (5b) gives  p2 = 0.013. 

Once the  es t imates  f o r  p2,  p3, p4 were found, p1 w a s  obtained from 

the r e l a t i o n  

N 
o c  

1 Yj Yj 
- j =1 

N c 2  p1 - 
(YL ) 

N 
o c  

1 Y4 Y, 

7 j =1 

0 where y is  the  observed s i z e  d i s t r i b u t i o n  a t  r is  the  ca l cu la t ed  
j 

d i s t r i b u t i o n  value and N is  the  t o t a l  number of d a t a  p o i n t s .  

These es t imates  of  parameters were used t o  i n i t i a l  es t imates  of p 

i n  a nonl inear  l e a s t  squares program t o  ob ta in  t h e  b e s t  f i t .  The r e s u l t s  
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a r e  given i n  Fig.  5.2. 

was too  f z r  t o  the  l e f t  of t he  d a t a  p o i n t s  because t h e  i n i t i a l  e s t ima te  f o r  

p2 w a s  too low. 

t h e  f i n a l  es t imate  and a b e t t e r  i n i t i a l  es t imate  of p2 could have been 

obtained by tak ing  the  midpoint of t he  peak region as the  mode r ad ius  

r a t h e r  than the  a c t u a l  maximum. 

The i n i t i a l  es t imate  had the  r i g h t  shape b u t  

The i n i t i a l  es t imates  f o r  p3 and p4 agree q u i t e  w e l l  wi th  

The desc r ip t ion  and use of the  g raph ica l  ca ta log  were confined t o  the 

r a d i u s  number d i s t r i b u t i o n  n ( r )  a lone.  For similar d e t a i l s  regarding 

n,(r) and N ( r ) ,  see Ref. 3 7 .  These p lo ts  can be used t o  es t imate  the 

parameters f o r  multimodal d i s t r i b u t i o n s  (Ref. 37) by v i s u a l l y  ske tch ing  

i n  the  m o s t  probable behavior f o r  each mode and then  determining t h e  

parameters f o r  each mode separa te ly .  

(v) Conc lud ing  Remarks 

The uses  of t he  graphica l  ca t a log  are twofold. F i r s t ,  i t  provides  a 

ca t a log  o f  t h e  shapes of t h e  d i f f e r e n t  d i s t r i b u t i o n s ,  i l l u s t r a t i n g  such 

p r o p e r t i e s  as the  loca t ions  of mode r a d i i ,  r a t e s  o f  f a l l - o f f  and polydispers :  

By providing a means f o r  comparing d i s t r i b u t i o n s ,  it a i d s  i n  s e l e c t i n g  

the  model(s) most l i k e l y  t o  give a good desc r ip t ion  of the  experimental  

d a t a  t o  be f i t t e d .  Second, t he  ca ta log  provides a means of  es t imat ing  t h e  

l i k e l y  values  of the  model parameters. Parameter es t imates  thus obtained 

can then be used as i n i t i a l  guess parameters i n  nonl inear  least  squares  

o r  o t h e r  opt imizat ion codes t o  obta in  t h e  b e s t - f i t  values  of  the parameters.  

I t  is important t h a t  t he  model chosen t o  f i t  the  s i z e  d i s t r i b u t i o n  

d a t a  be an appropr ia te  one i f  u se fu l  r e s u l t s  a r e  t o  be obtained. A model 

is  considered appropriate ,  i f  p rope r t i e s  such a s  the  mode r ad ius ,  rates 

of  f a l l - o f f  and polydispers i ty  of the  model a r e  simihr tc t h a t  of t h e  

5-26 



experimental  s i z e  d i s t r i b u t i o n  da ta .  

a n a l y t i c a l  models and t h e i r  p rope r t i e s  is given i n  Appendix 5A. 

I t  is worth mentioning t h a t  i n  the  l i t e r a t u r e  on t h i s  sub jec t  one 

o f t e n  f i n d s  experimental  s i z e  d i s t r i b u t i o n s  being represented  by o the r  

a n a l y t i c  func t ions  o r  t h e i r  sums, such as, exponent ia l  func t ion ,  

" t runcated" p o w e r  l a w ,  and Chebyshev c o e f f i c i e n t s .  But they do not  

q u a l i f y  f o r  i n c l u s i o n  i n  our scheme on the  b a s i s  of the  s e l e c t i o n  cr i ter ia  

i n  Sec t ion  (ii). 

may have been i n a d v e r t e n t l y  overlooked. 

A summary t a b l e  f o r  t h e  d i f f e r e n t  

It is  q u i t e  l i k e l y  t h a t  s o m e  o t h e r  a n a l y t i c  r ep resen ta t ions  
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SECTION 6 

RETRIEVAL O F  AEROSOL CHARACTERISTICS FROM SATELLITE BORNE SCATTERING AND 

EXTINCTION MEASUREMENTS 

A v e r s a t i l e  i n v e r s i o n  code has  been developed which i s  capable  of  

r e t r i e v i n g  p r o f i l e s  of a e r o s o l  s i z e  d i s t r i b u t i o n  and concen t r a t ion  from mult i -  

wavelength s a t e l l i t e  measurements of  e i t h e r  t h e  scattered rad iance  from t h e  

E a r t h ' s  s u n l i t  atmosphere i n  both t h e  limb-viewing mode and downware-viewing 

mode, or t h e  e x t i n c t i o n  of d i r ec t  solar r a d i a t i o n  by t h e  e a r t h ' s  atmosphere. 

The i n v e r s i o n  code i n  i t s  p r e s e n t  form i s  a composite of t h r e e  sub-codes 

corresponding t o  t h e  aforementioned t h r e e  measurement modes. 

o f  t h e s e  codes w i l l  be given. The inve r s ion  code is composed of s e v e r a l  

module a lgo r i thms  ( o r  sub rou t ines )  f o r  t r e a t i n g  t h e  i n v e r s e  problem i n  

radiative t r a n s f e r  through a s c a t t e r i n g  and absorbing a e r o s o l  atmosphere, 

which i s  v e r t i c a l l y  inhomogeneous, s p h e r i c a l ,  and which t a k e s  i n t o  account 

m u l t i p l e  s c a t t e r i n g  and s u r f a c e  albedo e f f e c t s .  The a p p r o p r i a t e  module 

a lgor i thms can be in te rchangeably  brought i n t o  o p e r a t i o n ,  a s  needed f o r  any 

of t h e  three d i f f e r e n t  modes of measurement. The  i nve r s ion  code w a s  i n i t i a l l y  

developed €or  t h e  problem of r e t r i e v i n g  p r o f i l e s  of a e r o s o l  s i z e  d i s t r i b u t i o n  

( S . D . )  and d e n s i t y ,  ozone and NO d e n s i t y  from 8-channel measurements of 

scattered rad iance  i n  t h e  l i m b  viewing mode ( R e f .  4 9 ) .  Work on development 

of va r ious  a s p e c t s  of t h e s e  codes,  under NASA suppor t ,  has been cont inuing  

s i n c e  e a r l y  1970s.  The inve r s ion  code has  been adapted,  app l i ed ,  and t e s t e d  

us ing  s y n t h e t i c ,  and some r ea l ,  measurements f o r  t h e  remote sens ing  techniques  

shown i n  Table 6 . 1  (Ref. 5 5 ) .  

A d e s c r i p t i o n  

2 
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TABLE 6 .1:  Remote Sensing Techniques and Observing Modes 

Observation Modes Wavelengths Quantity Retrieved Altitude Range 

Solar extinction 
--limb 

Scattered radiance 
--limb 

Solar aureole 
--limb 

Scattered radiance 
--downviewing 

SBW--downviewing 

SEW-- 1 imb 

vis/near IR 

vis/near IR 

vis/near IR 

vis/near IR 

w 
W 

Aerosol, O3 

Aerosol S.D. 
Rayleigh 

3* 
Aerosol S.D. 

Aerosol loading 

Ozone profile 

Ozone profile 

10-50 km 

15-40 km 
10-50 km 
15-40 km 
25-50 km 

Middle 
Atmosphere 

Troposphere 

25-50 km 

35-50 km 

Examples are given showing the retrieval results for the vertical profiles 

of aerosol size distribution, concentration, and real and imaginary parts 

of the refractive index (assuming spherical particles) from simulated measure- 

ments of the profiles of limb scattered radiance and atmospheric extinction 

(e.g., SAM I1 and SAGE), and for the total aerosol loading from measurements 

of upwelling radiance (e.g. , Landsat and GOES series) . In addition, we 

discuss the sensitivity of retrieved results to different parameters, such 

as, percentage random error, initial guess, surface albedo, etc. 

(i) Inversion Code 

The inversion code, originally referred to as SLIC (Sunlit Limb Inversion 

Code), is in its present form a composite of three codes corresponding to the 

different observation modes, i.e., SLIC, SEIC (Solar Extinction Inversion 

Code), and SURIC (Sunlit Upwelling Radiance Inversion Code), each applicable 

to the appropriate aforementioned problem. 

bases of these codes are briefly summarized. 

The physical and mathematical 

Solutions to the remote sensing problem generally involve two elements. 
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An equation or modeling process is required to enable the mapping of observa- 

tions onto the space of sought variables and a regularization process is 

required to condition the solutions so that they meet acceptable physical 

and mathematical criteria. SLIC and SURIC carry out the variable-observation 

mapping by means of a radiative transfer model named DART (Ref. 4 9 ) ;  and SEIC 

carries it out by the use of Beer-Bouguer Law.  It achieves regularization by 

application of optimal estimation theory. 

Let M(5) represent an observation vector, and 5 an observable vector of 

where x 

or optimal solution 

is any prior estimate of 5.  Minimizing J yields a minimum variance 
‘P 

= x + K ( P  H R) {? - M(x ) I  ( 2 )  ‘P PI P’ -P 

where P and R are the state and measurement error covariances. In the inver- 

sion codes, this estimator is iterated by inserting 5 for 5 until the 8 

residuals are less than the observational uncertainty. Some of the important 

attributes of these codes are: (a) iteration to treat nonlinear problems; 

(b) calculation of multiple scattering in a curved atmosphere; c) a pseudo- 

partial technique for speeding convergence; and, (d )  a procedure for rapidly 

mapping aerosol physical parameters onto observation space. 

P 

P 

(ii) Sample Applications 

Sample application results are shown in Figs. 6.1 to 6.4 for retrieved 

profiles of aerosol characteristics (and ozone and NO2 density) and retrieved 
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a e r o s o l  l oad ing  obta ined  from m u l t i s p e c t r a l  measurements. 

C a s e  1: Retr ieval  o f  Pro f i l e s  o f  Aerosol C h a r a c t e r i s t i c s  (and ozone 
a n d  NO2 d e n s i t y )  f r o m  S imula ted  N e a s u r e m e n t s  o f  S c a t t e r e d  
R a d i a n c e  i n  Limb V i e w i n g  Mode. 

Figure  6 . 1  a )  shows t h e  viewing geometry f o r  measuring scattered rad iance  of 

t h e  s u n l i t  l i m b  ( i .e . ,  i n  t h e  l i m b  viewing m o d e ) .  Simulated measurements of 

v e r t i c a l  p r o f i l e s  of  s c a t t e r e d  r ad iance  of t h e  s u n l i t  hor izon  i n  seven channe l s  

( A = 350, 400, 490, 600, 675, 777, and 863 nm) were used t o  r e t r i e v e  ve r t i ca l  

p r o f i l e s  of t h e  fo l lowing  q u a n t i t i e s :  (a) aerosol s i z e  d i s t r i b u t i o n  r e p r e s e n t e d  

by Junge power l a w  exponent v (see Fig.  6.1 b)); (b) aerosol d e n s i t y ,  particles 

c m  (see Fig.  6 . 1  c ) ) ;  (c) real p a r t  of  aerosol r e f r a c t i v e  index (see Fig .  6 .1  d 

(d)  imaginary par t  of  a e r o s o l  r e f r a c t i v e  index  (see Fig .  6 .1  e ) ) ;  molecular  

d e n s i t y  ( n o t  inc luded  he re )  ; 

d e n s i t y  (see Fig.  6 .1  9 ) ) .  The r e t r i e v e d  r e s u l t s  show good agreement w i t h  t r u e  

-3 

(f) ozone d e n s i t y  (see F i g .  6 .1  f ) )  ; and (9) NO2 

va lues  (c i rc les) .  The agreement f o r  t h e  cases of NO2 and a e r o s o l  r e f r a c t i v e  

index a t  lower a l t i t u d e s  could be improved by  i n c r e a s i n g  t h e  upper l i m i t  of  t h e  

number o f  i t e r a t i o n s  t o ,  say ,  20. Work i s  i n  p rogres s  on de termining  t h e  

s e n s i t i v i t y  of  r e t r i e v a l s  t o  t h e  i n i t i a l  guesses  f o r  t h e  d i f f e r e n t  parameters .  

Case 2 :  R e t r i e v a l  o f  T r o p o s p h e r i c  Aerosol Content (or O p t i c a l  D e p t h  
or Ext inc t ion  C o e f f i c i e n t )  f r o m  M e a s u r e m e n t s  of U p w e l l i n g  
R a d i a n c e .  

A s  an example, r e t r i e v a l s  of t roposphe r i c  a e r o s o l  e x t i n c t i o n  ( o r  a e r o s o l  

con ten t )  were made from simulated upwell ing r ad iance  measurements a t  wavelength 

A = 1 . 0  pm. The agreement between t h e  r e t r i e v e d  va lue  and t h e  t r u e  va lue  is 

extremely good as shown i n  Fig.  6.2. The viewing geometry i s  shown i n  

Fig.  6.2 a ) .  
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F I G .  6.1 b): R e t r i e v e d  S i z e  D i s t r ibu t ion  

( J u n g e  Power  Law E x p o n e n t  v ) .  
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F I G .  6.1 f ) :  R e t r i e v e d  Ozone D e n s i t y  P r o f i l e  
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F I G .  6.2 a ) :  V i e w i n g  Geometry  for the Downviewing 

O b s e r v a t i o n  Mode I 

FIG- 6 . 2  b): Retrieval o f  T r o p o s p h e r i c  Aerosol Content or O p t i c a l  

Dep th  f r o m  S i m u l a t e d  U p w e l l i n g  R a d i a n c e  Measurements  

a t  W a v e l e n g t h  1.0 urn. 
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Case 3 :  T h e  R e t r i e v a l  of Aerosol and 0 me  D e n s i t y  r o f i l e s  from 
R e a l  Measuremen t s  o f  Direct A t t e n u a t e d  S o l a r  I r r a d i a n c e  
( S o l a r  Extinction Mode). 

The viewing geometry f o r  t h e  s o l a r  e x t i n c t i o n  mode du r ing  sa te l l i t e  s u n r i s e /  

sunse t  i s  shown i n  Fig.  6.3. This  i s  s i m i l a r  t o  t h e  case o f  SAM I, SAM 11, 

SAGE I, and SAGE I1 experiments .  F igs .  6.3 b) and 6.3 c )  show t h e  retrieved 

r e s u l t s  f o r  a e r o s o l  and 0 d e n s i t y  p r o f i l e s  ob ta ined  from t y p i c a l  4-channel 

SAGE I measurements (A = 1.0, 0.6,  0.45, and 0.385 m ) .  These r e t r i e v a l s  

agree w i t h  r e t r i e v a l s  ob ta ined  by W i l l i a m  Chu, NASA-Langley Research Center  

( n o t  shown i n  F igs .  6.3 b )  and 6.3 c ) )  u s i n g  o t h e r  i n v e r s i o n  techniques .  

3 

Case 4 :  S o l a r  Aureole-Limb V i e w i n g  

Pre l imina ry  r e s u l t s  of r e t r i e v a l s  from m u l t i s p e c t r a l  solar a u r e o l e  measurements 

i n d i c a t e  t h a t  it is an a c c u r a t e  method €or determining  a e r o s o l  s i z e  d i s t r i b u -  

t i o n s ,  and i t s  use  i n  f u t u r e  s a t e l l i t e  a e r o s o l  sounding work is s t r o n g l y  

recommended. A s u c c e s s f u l  experimental  v a l i d a t i o n  of  t h e  solar a u r e o l e  

method us ing  ground based obse rva t ions  has  been performed. Forward-sca t te r ing  

l imb rad iance  measurements would then be those  t h a t  are  made c l o s e  t o  t h e  sun 

du r ing  t h e  s a t e l l i t e  s u n r i s e  o r  sunse t  even t s .  The advantages of t h e  forward- 

s c a t t e r i n g  t echn ique  are t h a t  i t  is  most s e n s i t i v e  t o  t h e  a e r o s o l  s i z e  d i s t r i -  

b u t i o n  and r e l a t i v e l y  less s e n s i t i v e  t o  r e f r a c t i v e  index and t h e  shape. 

(iii) V a l i d a t i o n  o f  the A c c u r a c y  of the Inversion C o d e s  

I n  o r d e r  t o  show t h a t  i nve r s ion  codes w e  have developed produce a c c u r a t e  

r e t r i e v a l s ,  w e  performed a r e t r i e v a l  of t h e  ozone d e n s i t y  p r o f i l e  from t h e  

upwell ing r ad iance  measurements i n  t h e  S B W  experiment because ground t r u t h  

measurements w e r e  a v a i l a b l e  f o r  t h i s  experiment.  The viewing geometry o f  
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radiance measurements in the downviewing mode is shown in Fig. 6.2 a). 

Retrievals of ozone density profile were obtained from real 7-channel S B W  

measurements at Point Mugu, CA, and were compared with rocket measurements 

of ozone profile (shown by solid line) (Ref. 5 5 ) .  The agreement between the 

two results is excellent as shown in Fig. 6.4. 

(iv) S e n s i t i v i t y  S t u d i e s  

Systematic error analysis studies are currently being performed to 

understand h o w  the errors in the selection of initial guess values affect the 

retrieved aerosol extinction B results for various percentage rms random 

error values (O., 2.0, 5.0, and 10%) in the measurements at different values 

of the surface albedo (A = 0.05, 0.1, 0.2, and 0.3; see Table 6.2) and 

tangent altitude (16  and 24 km; see Table 6 .3 ) .  As expected, the accuracy of 

the retrieved Baer improves when the rms error is decreased and the initial 

guess is brought closer to the true value. 

aer 

( v )  A d v a n t a g e s  of S a t e l l i t e - B a s e d  S c a t t e r e d  R a d i a n c e  T e c h n i q u e  

The following are some of the advantages of the scattered radiance 

technique: 

(a) No restrictions are placed on the sun's location, so that continuous 

or intermittent measurements can be made of the aerosol size distribution 

during the entire sunlit portion of the orbit, which will shed information on 

the temporal behavior of stratospheric aerosols and their sources and sinks. 

However, the most accurate information about aerosol size distributions, we 

believe, would be obtained from forward-scattered (aureole) limb radiance 

measurements when the sun's disk is close to the horizon. 
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TABLE 6.2: R e t r i e v a l  A c c u r a c y  for B a t  A = 1.0 pm for V a r i o u s  a er 
V a l u e s  of Random Error and I n i t i a l  G u e s s .  T r u e  V a l u e  of 

( a t  0 km) = 7.96 x km-l. a e r  B 

Random Initial Guess ( Z  True Value) error 
(% Signal) 10.0 30.0 50.0 70.0 90.0 

0.05 0. 7-93(-3) 7.94(-3) 7.95(-3) 7.95(-3) 7.96(-3) 
.02 6.89(-3) 6.93(-3) 6.94(-3) 6.94(-3) 6.94(-3) 
.05 5.39(-3) 5.43(-3) 5.43(-3) 5.44(-3) 5.44(-3) 

. l o  9. 7.94(-3) 7.95(-3) 7.95(-3) 7.95(-3) 7.96(-3) , 

' .02 7.25(-3) 7.25(-3) 7.26(-3) 7.27(-3) 7.27(-3) 
.05 6.22( -3) 6.23( -3) 6.24( -3) 6.24( -3) 6.24( -3) 

~~~~~~ ~~ 

.20 0. 7.94(-3) 7.95(-3) 7.95(-3) 7.95(-3) 7.95(-3) 
.02 7.36(-3) 7.37(-3) 7.37(-3) 7.37(-3) 7.38(-3) 
.OS 6.50(-3) 6.50(-3) 6.51(-3) 6.51(-3) 6.51(-3) 

.30 0. 7.94(-3) 7.95(-3) 7.95(-3) 7.95(-3) 7.96(-3) 
.02 7.49(-3) 7.40(-3) 7.40(-3) 7.41(-3) 7.41(-3) 

- .05 6.50(-3) 6.58[-3) 6.59(-3) 6.59(-3) 6.59(-3) 
-10 5.24(-3) 5.24(-3) 5.24(-3) 5.24(-3) 5.24(-3) 
.15 3.92(-3) 3.92(-3) 3.91(-3) 3.91(-3) 3.90(-3) 

.20 2.62(-3) 2.61(-3) 2.60(-3) 2.59(-3) 2.59(-3) 
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TABLE 6.3: R e t r i e v a l  A c c u r a c y  for $ a t  A = 1.0 pm for V a r i o u s  

V a l u e s  of Random Error and I n i t i a l  Guess.  ( D e t e c t o r  

A l t i t u d e  = 600 km) 

a er 

A1 ti t u d e  16  km ( T r u e  

Initial Guess ( %  True value) 
Random Error  

( $  Signal) LO. 30. 50. 70. 90. 

0.0 2.81 (-4) 2.80 (-4) 2.80(-4) 2 - 8 0  (-4) 2.80 (-4) 

2.0 2.84 (-4) 2.82 (-4 2.78 (-4) 2 - 8 0  (-4) 2.78 (-4) 

5.0 2.83 ( -4 )  2.78 (-4) 2.88 (-4) 2.77(-4) 2.79 (-4) 

10.0 2.97 (-4) 2.87(-4) 2.74 (-4) 2.92 (-4) 2.74(-4) 

A l t i t u d e  24 km ( T r u e  Baer = 7 .000( -5 )  k m - l )  

Initial Guess ( %  True value) 
Random Error 

( 8  Signal) 10. 30. 50. 70. 90. 

0.0 7 .01  ( - 5 )  7.01  (-5) 7.00(-5) 7.00 (-5) 7 .OO ( - 5 )  

2.0 7.16 (-5) 6.87 (-5) 6.30 (-5) 7.12 (-5) 6.56 (-5) 

6.89 (-5) 6.41(-5) 5.95(-5) 5.0 7.89(-5) 7.39 (-5) 

10.0 6.72(-5) 1 6.34(-5) 7.54 ( -5  1 7.02 (-5) 6.51  (-5) 
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(b)  Because of t h e  measurements of angular d i s t r i b u t i o n  of t h e  s c a t t e r e d  

radiance,  it w i l l  be poss ib l e  t o  make accura te  r e t r i e v a l s  of ae roso l  s i z e  

d i s t r i b u t i o n  which are p resen t ly  not  ava i l ab le  on a g loba l  bas i s .  

(c) I n  add i t ion ,  by making p o l a r i z a t i o n  measurements of s c a t t e r e d  

radiance it should be poss ib l e  t o  r e t r i e v e  the  ae roso l  r e f r a c t i v e  index, which 

i s  s e n s i t i v e  t o  p o l a r i z a t i o n .  

Cvi) Conclusions 

These r e s u l t s  show t h e  soph i s t i ca t ion  and accuracy of our  invers ion  codes. 

However, t h e i r  c a p a b i l i t i e s  can be enhanced by performing: (a)  s e n s i t i v i t y  

s t u d i e s  such as errors i n  r e t r i e v e d  r e s u l t s  due t o  bandwidth o r  radiometer 

channels and s u r f a c e  albedo, and (b)  channel opt imizat ion s t u d i e s  f o r  designing 

of radiometer channels t o  provide optimized r e t r i e v a l s  of c e r t a i n  spec ie s  of 

t ropospher ic  ae roso l s  t h a t  may be of s p e c i a l  i n t e r e s t .  
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SECTION 7 

SIMULATION OF LIMB SOLAR AUREOLE RADIANCE 

7.1 INTRODUCTION 

In Section 2, we have discussed the theory and application 

of solar aureole almucantar radiance. The solar aureole is the 

0 
region of enhanced sky radiance close to ( -  within 20 of) the 

solar disk; and the almucantar is the observation scan for which 

the zenith angle equals the solar zenith angle with the axis of 

rotation along the local zenith. In Section 2, it was shown that 

columnar size distributions of atmospheric aerosols can be 

effectively retrieved from the almucantar radiance measurements 

made either from ground-based or airborne platforms. In either 

case, the results are regional in nature. Since the information 

of aerosol size distributions with a global scale coverage is 

highly desired for many purposes, such as for studying the 

potential impact of aerosols on the climate, we investigate, in 

this Section, extending this technique to satellite-based 

measurements of forward scattered solar aureole radiance at 

appropriate range of scattering angles for either a single 

wavelength or multiwavelengths. In this Section we present the 

results of numerical simulation of the limb solar aureole 

radiance and discuss if the weighting functions would permit 

retrieving aerosol size distributions with high vertical 

resolution. The results of retrievals will be discussed in a 
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subsequent publication. 

7.2 SINGLE SCATTERING THEORY OF THE LIMB SOLAR AUREOLE RADIANCE 

In this section, we consider the single scattering theory of 

the limb solar aureole radiance as viewed from a satellite-borne 

sensor. The following simplifying assumptions used in the theory 

are: 

1. Particles are spherical so that results of the Mie theory 

can be applied. 

2. The atmosphere is spherically symmetric, horizontally 

homogeneous, and vertically inhomogeneous. 

3 .  Absorption effects are ignored by selecting to work in 

spectral regions for which atmospheric absorption is nil. 

4 .  The polarization effects are small for forward-scattered 

light and can be ignored. 

5. The multiple-scattering effects at the forward-scattering 

angle are small compared with the single scattering and can be 

ignored. 

Figure 7.1 shows schematically the sensing geometry of a 

satellite-borne instrument measuring the limb solar aureole 

radiance. Point A represents the location of the satellite 
- I  instrument and 0 is the center of the earth. The line ABC 

denotes the viewing path of the detector with the portion BC’ 
-+ 
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passing through the atmosphere. The sunlight is in the direction 
4 + 
B : B 1 .  The line CF represents a typical incoming ray of the solar 

radiation which reaches the detector (at A )  after being scattered 

by the volume element at point F at a scattering angle 9. The 

circle given by B'E'B"E"B'  (at the outer edge of the atmosphere) 

defines the scanning plane of the instrument scanning across the 

sun disk. The line AB'O'b" corresponds to the viewing path in 

the case of solar occultation measurement of the attenuated solar 

intensity (Section 6, Fig. 6.3). From Fig. 7.1, one may notice 

that all the incoming rays, which are encountered by the 

atmosphere along the arc C'CC", will be scattered at different 
n 

locations along the viewing path BC with the same scattering 

angle 9 , and be able to reach the detector at A. The normal view 

of the scanning plane B'E'B"E"B' is illustrated in Fig. 7.2, and 

that of the plane OO'F is shown in Fig. 7 . 3 .  It is important to 

keep in mind that, in reality, measurement of the limb solar 

aureole almucantar radiance can be made whenever the spacecraft 

sunrise or sunset occurs. This sampling opportunity is exactly 

the same as that of the SAM 11, SAGE 1 and SAGE I1 instruments. 

Furthermore, because this scheme takes the limb viewing geometry, 

the measurements of scattered radiance can be carried out at 

different sun-tangent heights (defined by the distance h = OO', 
0 

Fig. 7.3). Thus, higher vertical resolution can be achieved by 

this technique. This is in contrast to the ground-based solar 

aureole almucantar radiance approach (Section 2 1 ,  in which case 
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one obtains mainly the path integrated (or columnar) information 

I 

about the aerosol size distribution. 

The governing equation of the total near-forward, 

solar radiance, along the viewpath BC’ at 

with a scattering angle IJJ and a sun-tangent altitude 

singly-scattered, limb 

wavelength 

h (=OO’ in Fig. 7.1), is given by 
T 

L 

Most of the notations in Eq. (7.1) have their conventional 

meanings as defined in Section 2, except that they are applied to 

paths with different geometry. In Eq. 7.1, we have 

which is the number of aerosol particles with radius between r 

and r + dr. In introducing Eq. 7.2, we have assumed that the 

form of the particle size distribution n(r) does not itself 

change with altitude z, but only the aerosol number density 

varies. There are two reasons fo r  this assumption. First, it 

simplifies the simulation computation. Secondly, the detailed 

vertical variation of q(r,P) is still uncertain. In Eq.(7.1), P 

is referred as an abitrary point along the viewing path, at which 

an incoming ray is scattered. T(BP) is the transmission of the 

path from B to P, and T(PC) is the that of the path from C to P. 

In order to determine the values of T(BP), T(PC), and to perform 



the integration along the viewing path BC’, the atmosphere is 

I divided into appropriate concentric shells with equal thickness 

( =  1 km, Fig. 7.1). The input data for this simulation include a 

background (molecular) atmosphere of the U . S .  Standard Atmosphere 

1976, and an aerosol particle profile based on the lognormal size 

distribution (Russell, et al., 19811, with the number 

concentration given by McClatchey et al. (1971). The values of 

the parameters which specify the size distribution are r = 
9 

0.0725 pm, u = 1.86 corresponding to the background aerosol model 

(where r is the mode radius, u is the spread of the lognormal 
g 

curve). Figure 7.4 illustrates this lognormal size 

distribution. The vertical profile of aerosol density used in 

the analysis is displayed in Fig. 7.5. As to the refractive 

index, we have used the value of 1.43 corresponding to aerosol 

composition of 75% H SO and 2 5 %  H 0. 
2 4  2 

7 . 3  RESULTS 

Table 7.1 presents the numerical simulation data for the 

forward scattered radiance at 18 different scattering angles 

along the almucantar when the tangent height of the center of 

solar disk is at 10 km. The scattering angles are at 1 degree 

0 0 
interval from 1 to 18 . The computed signal radiance data is 

given in the third column of this table. The last column gives 

the corresponding tangent height of the viewing path at various 
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scattering angles. As one may notice, the tangent height of the 

viewing path increases with the scattering angle $ .  This 

situation is illustrated in Fig. 7 . 3 .  Furthermore, Table 7.1 

shows that the scattered radiance decreases monotonically with 

the scattering angle $ , with the largest contribution occurring 

at $ =  1 degree. The fourth column in Table 7.1 is the tangent 

altitude of the viewing path. 

Equation 7.1 can be written 

C' 

where the subscripts M and A are the volume scattering 

coefficients of the molecules and aerosol, respectively, and w is 

the weighting function with an infinitesimal field of view. This 

weighting function tells how much the level z ,  where P is 

located, contributes to the radiation observed along a particular 

viewing path with a scattering angle $ and the sun-tangent 

altitude h (Fig. 7.1). The weighting functions corresponding to 

the sun-tangent height (h ) at 10 km is displayed in Fig. 7.6. As 

shown in Table 7.1, there are 18 scattering angles in this case. 

Only the weighting functions of every other scattering angle are 

shown in Fig. 7.6,  which exhibits many interesting features. 

First, the weighting function shows a peak at the tangent of the 

viewing path. Secondly, the envelope of the peak of all the 

weighting functions of this particular scan exhibits closely the 

T 

T 
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vertical profile of aerosol number concentration (Fig. 7.5). This 

suggests that the signal radiance (column three in Table 7.1) is 

mainly due to aerosol scattering contribution coming from regions 

near the tangent point of the corresponding viewing It is 

interesting to note that the weighting function shows a slight 

asymmetry in the two parts of the viewing path separated by the 

tangent, especially the lower several curves corresponding to 

small scattering angles (see for example the curve with a 

scattering angle of 9 degrees). 

path. 

To explain this, one refers to Fig. 7.7. In this figure, P 

and P' are the locations of two volume elements along the viewing 

path BC'. They are at equal distance from the tangent F. The 

weighting function contributions of these two elements are 

T ( T )  {%(PI) + FA(P) 1 T(P'B)ds 

at point P and P', respectively. Note, since the atmosphere is 

assumed spherically symmetric, we have 

However, in general 

AS a r e s u l t ,  the contribution to the weighting function from the 

two parts of the viewing path are not the same. As one may 

7-7 



anticipate, this difference gradually vanishes as the tangent 

altitude of the viewing path increases. 

Similar calculations have also been carried out for every 

other 1-km altitude from 12 km to 26 km. The results of the 

calculated signal radiance are given in Table 7.2, and also shown 

in Fig. 7.8. From Fig. 7.8,  one can see that the aureole radiance 

decreases rapidly as the sun-tangent altitude increases. In 

order to see the sensitivity of the calculated limb solar aureole 

almucantar radiance with respect to mode radius (r ) which is 
g 

used in the lognormal size distribution, calculations have been 

made with r = 0.0800 pm and r = 0.0653 pm. These two values 
g g 

are chosen by increasing and decreasing the value 0.0725 pm by 

lo%, which is used in obtaining the results shown in Fig. 7.8.  

The results of these calculations for r = 0.800 pm and 0.0653 pm 
g 

are displayed in Figs. 7.8  and 7.9, respectively. By an 

examination of Figs. 7.8 through 7.10, it is found that the limb 

solar aureole almucantar radiance is sensitive to the aerosol 

size distribution. 

In conclusion, we have successfully simulated the near 

forward scattering of the limb solar radiation based on a 

numerical model and examined the sensitivity of the solar aureole 

almucantar radiance with respect to the aerosol size parameter 

(r 1. This is a first step toward an attempt to examine the 
g 



possibility of measuring the stratospheric aerosol size 

distribution with global scale coverage and with high vertical 

resolution by using a satellite-borne instrument. The next step 

is to perform numerical simulations of retrieving the aerosol 

size distribution from the simulated radiance. This requires a 

development of an appropriate inversion scheme. 

It is suggested that as a first step, the limb solar aureole 

radiance be determined by taking limb solar aureole photographs 

by using the camera(s) already aboard the space shuttle, and then 

deriving the aureole radiance by using the well-known 

photographic-photometry-microdensitometer techniques. Such 

procedures have been successfully tested and used in determining 

the almucantar radiance from ground platforms, and have been 

described in Section 2 in detail. 
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T a b l e  7.1. Limb So la r  Aureole Radiance a t 1  = 1 l.un 
When t h e  Sun-Tangent Height is a t  10 km. 
S o l a r  I r r a d i a n c e  = 0.0746 (W/cm2 - p) 

S c a t t e r i n g  Angle Aureole V i e  w-P a t h  
@ R a  d i anc  e Tangen t-Height 

(deg) (W/cm2-sr-p) (km) 

1 1 , 000 0.8 9426E-02 10.155 

2 , 000 0.8 7 7 74E- 0 2 

3.000 0.847253-02 

10 -620 

11.394 

4.000 0,79633E-02 12.475 

5.000 0.7237lE-02 13.864 

6 6.000 0.62734E-02 15.557 

7 7.000 0.49738E-02 17.553 

a 8 , 000 0.296103-02 

9 9.000 0.1599%-02 

10 10.000 0.86747E-03. 

11 11.000 0.4189lF-03 

1 2  12.000 0.1836X-03 

19 -848 

22,440 

25.324 

28.498 

31.957 

13 13.000 0.77006E-04 35.6% 

1 4  14.000 0.3 2260E-04 39.710 

15 15.000 0.13 934E-04 43.994 

16.000 0.6413934 5 48.541 

1 7  17.000 0.3 12763415 53.347 

18 18.000 0.1521X-05 58.404 

16 
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Figure 7.3. T h e  normal view of t h e  plane OO'F shown in Fig. 7.1.  
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Figure 7 . 6 .  Weighting functions at a range o f  scattering 
angles from 1' to 17'. 
a n  altitude of 10 km 
ho-R in F i g .  7 . 3 . )  

The  sun-tangent is at  
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SECTION 8 

VARIABILITY OF OZONE AT HIGH ALTITUDES DURING SATELLITE SUNSET/SUNRISE 
EVENTS 

The solar o c c u l t a t i o n  technique has been used €or  measuring t h e  concen- 

t r a t i o n  of atmospheric  minor c o n s t i t u e n t s  i n  t h e  upper atmosphere. This  

technique de termines  t h e  a t t e n u a t i o n  p r o f i l e  of solar i n t e n s i t y  dur ing  sun- 

r ise and s u n s e t  encountered by t h e  ins t ruments  mounted on  t h e  o r b i t i n g  

satel l i tes .  The SAGE I (McCormick e t  a l . ,  ( R e f .  5612 is  a good a m p l e  of us ing  

t h i s  s o l a r  o c c u l t a t i o n  technique.  Due t o  t h e  fact  t h a t  concen t r a t ions  o f  

a tmospheric  s p e c i e s  wi th  a photochemical r e l a x a t i o n  time scale of t h e  o r d e r  

of a day or  less undergo s i g n i f i c a n t  d i u r n a l  v a r i a t i o n s ,  t h e  i n t e r p r e t a t i o n  

of  t h e  measured r e s u l t s  u s ing  s o l a r  o c c u l t a t i o n  technique r e q u i r e  detailed 

knowledge of the d i u r n a l  v a r i a t i o n  of t h e  i n t e r e s t e d  spec ie s .  S ince  ozone 

is  one of t h e  m o s t  important  a tmospheric  c o n s t i t u e n t s ,  and s i n c e  it has  

been measured us ing  s o l a r  o c c u l t a t i o n  technique ,  it is  s i g n i f i c a n t  to  

i n v e s t i g a t e  i t s  d i u r n a l  v a r i a t i o n .  Modeling s t u d i e s  on t h i s  v a r i a t i o n  have 

been conducted by many i n v e s t i g a t o r s .  However, i n  t h e  e x i s t i n g  models' t h e  

complete d i u r n a l  i n t e g r a t i o n s  a re  c a r r i e d  o u t  by assuming i m p l i c i t l y  o r  

e x p l i c i t l y  t h a t  t h e  t i m e  dependence of t h e  overhead ozone column has a s m a l l  

e f fec t  on d i u r n a l  v a r i a t i o n s  of pho tod i s soc ia t ion  ra tes  a t  t h e  l e v e l  i n  ques t ion .  

In  o t h e r  w o r d s ,  a background ozone d i s t r i b u t i o n ,  i n  gene ra l ,  assumed t o  be a func- 

t i o n  of a l t i t u d e  but  no t  t i m e ,  i s  used f o r  t h e  complete d i u r n a l  i n t e g r a t i o n .  A s  

a r e s u l t ,  the  t i m e  v a r i a t i o n  of l o c a l  pho tod i s soc ia t ion  ra te  is  determined 

% r a t h e r  (1981) has taken t h e  s p h e r i c i t y  and t h e  change i n  l o c a l  solar t i m e  
a long  t h e  r a y  pa th  i n t o  cons ide ra t ion  i n  h i s  d i u r n a l  c a l c u l a t i o n .  However, 
he d i d  n o t  d e s c r i b e  the  method of h i s  c a l c u l a t i o n .  
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s o l e l y  by t h e  v a r i a t i o n  of l o c a l  z e n i t h  angle .  S ince  ozone absorbs  

s i g n i f i c a n t  amounts of s o l a r  r a d i a t i o n ,  and s i n c e  i t s  d i u r n a l  v a r i a t i o n  i s  

important ,  t h e  e f f e c t  of change i n  l o c a l  solar time along t h e  r ay  pa th  may 

be important i n  modeling of  ozone d i u r n a l  v a r i a t i o n .  

s e c t i o n  i s  to  desc r ibe  the d i u r n a l  v a r i a t i o n  o f  ozone i n  t h e  mesosphere 

(50-80 km) by us ing  a d i u r n a l  i n t e g r a t i o n  wi th  both s p h e r i c i t y  and changes 

i n  t h e  l o c a l  solar t i m e  a long  t h e  r a y  pa th  taken  i n t o  account .  The 

r e s u l t s  w i l l  be compared wi th  t h a t  wi thout  i nc lud ing  t h e  change i n  local 

The purpose o f  t h i s  

s o l a r  time a long  t h e  pa th .  Both, an  oxygen-only atmosphere and an  oxygen- 

hydrogen-nitrogen-carbon (0-H-N-C) atmosphere are used i n  t h i s  i n v e s t i g a t i o n .  

Comparison w i l l  also be made between t h e  model r e s u l t s  and t h e  available 

measurements. I t  should be mentioned t h a t  most of t h e  r e s u l t s  i n  t h i s  

s e c t i o n  have been p resen ted  i n  the  Quadrennial  I n t e r n a t i o n a l  Ozone Symposium, 

August 4-8, 1980, Boulder,  Colorado, U.S.A.  (Ref. 95) 

8 .1  PHOTOCHEMICAL MODEL 

Since the  c a l c u l a t i o n  f o r  t h e  oxygen-on1 atmosphere i s  s i m i l a r  t o  t h a t  

f o r  t h e  0-H-N-C atmosphere, w e  s h a l l  d i s c u s s  on ly  t h e  l a t t e r  i n  d e t a i l .  

This  model i nc ludes  a t o t a l  of 69 r e a c t i o n s  Table 8 .1)  and 24  atmospheric 

spec ie s  (Table  8 . 2  1 .  Among t h e s e  24  gases ,  18 o f  them are  expected t o  show 

d i u r n a l  v a r i a t i o n .  They are 0; O ( 1 D ) ;  Oj ;  H ;  H OH;  H 2 0 ;  H 0 2 ;  H 2 0 2 ;  N 2 0 ;  2; 

NO; NO2; NO3 CH3; CH 0; CHO; CH30;  and CH 0 (Table  8 . 2  ) .  Accordingly, t h e  2 3 2  

model c a n  be descr ibed  by a system of 18 s imultaneous nonl inear  d i f f e r e n t i a l  

equat ions  : 

dn 
3 = P - L  , j = l , 2 , .  . . , 1 8  
d t  j j 

where P and L r e p r e s e n t  t he  product ion and loss t e r m s ,  r e s p e c t i v e l y .  S ince  
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TABLE 8.1. Reaction Rate Constants* and Referencest. The uni t s  o f  rate 
constants are ~ m ~ s e c - 1  and cm6sec-1 f o r  the two- and three-body reactions 

respectively.  A l l  reaction rates and absorption cross-section d a t a  are 
from NASA RP 1049 unless otherwise noted. 

Reaction Rate Reference 

2 

2 

2 

1. O(1D) + N2 * 0 + N 
2. O(1D) + N2 + M + N 0 + M 
3. O(1D) + O2 * 0 + 0 
4. O(1D) + O3 -+ 202 

5. O(1D) + O3 * 20 + O2 
6. O(1D) + NO2 * NO + O2 
7. O(1D) + N20 * O2 + N2 
8. O(1D) + N20 * 2N0 
9. O(1D) + H2 * H + OH 
10. O(1D) + H20 * 20H 
11. O(lD) + H202 -+ OH + H02 
12. O H + O - + H + O  

13. H + O3 * OH + O2 
14. OH + H 2 
15. H + HO 2 
16. H + HO 2 

2 

+ H + H20 

2 * H2 + 0 
+ H20 + 0 

2.0 (-11) exp(-107/T) 
0 - 4 5  

3.5 (-37) (T/300)- 

2.9 (-11) exp (-67/T) 

1.2 (-10) 

i.2 (-10) 

1.0 (-10) 

4.8 (111) 

6.2 (-11) 

9.9 (-11) 

2 . 3  (-10) 

5.2 (-10) 

4.0 (-11) 

1.4 (-10) exp(-470/T) 

1.2 (-11) exp (-2200/T) 

4.2 (-11) exp(-350/T) 

8.3 (-11) exp(-500/T) 

2.3 (-12 exp (-1400/T) 

2.9 (-12) exp(-1400/T) 

4.3 (-25) T-2.6 

2 17. H + H202 -+ H02 + H 
18. H + H202 -f OH + H20 
19. H + OH + M * H20 + M 
20. O(1D) + CH4 * CH20 + H 1.4 (-11) 2 
21. OH + CH4 + CH + H20 3 

2 3 2  

2.4 (-12) exp(-1710/T) 

c =2.2 (-11) EX1=2.2 1 22. CH3 + 0 + M + CH 0 + M 

23. OH + CH20 -+ CHO + H20 
24. 0 + CH20 * OH + CHO 
25. H + O2 + M + H02 + M 

26. H + Ha2 -+ 20H 

27. OH + CO * H + C02 
28. CHO + O2 * HO 
29. O(1D) + CH4 * CH 

+ CO 

3 

2 
+ OH 

NBS 513 

NBS 513 

NBS 513 

NBS 513 

NBS 513 

NBS 513 

c ~ 2 . 0  (-12) EX2=1.7 2 

1.1 (-11) 

3.2 (-11) exp (-1550/T) 

5.5 (-32) (T/300) 

4.2 (-10) exp (-950/T) 

1.35 (-13) (1 + Patm) 

5.0 (-12) 

1.3 (-10) 

- 1 . 4  

NBS 513 

30. 0 + H02 -+ OH + O2 3.5 (-11) 
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TABLE 8 .I (continued) 

Reaction Rate Re f e re nc e 

31. 

32. 

33. 

34 * 

35 * 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 

46. 

47.  

48 .  

49. 

50. 

51.  

52. 

5 3 .  

54. 

55. 

56. 

57.  

58. 

59. 

60. 

61. 

6 2 .  

0 + H 2 0 2  -+ OH + H 0 2  

OH + O3 + HO + O2 1 .6  ( -12)  exp(-940/T) 

H 0 2  + O3 + OH + 2 0 2  1.1 (-14 1 exp (-580/T) 

2 . 8  ( -12)  exp (-2125/T) 

2 

2 OH + H 0 2  -+ H 2 0  + 0 

OH + OH + H 2 0  + 0 

OH + H 0 -+ H 0 2  + H 2 0  

HO + H 0 2  -+ H 2 0 2  + O2 

O + N O  + M + N O  + M  

0 + NO 
NO 2 
NO + NO + 2N02 3 
H02 + NO + OH + NO2 

2 2  

2 

2 3 
+ NO2 + 0 3 2 

+ O3 + NO3 + O2 

OH + OH + M + H 0 2 2  

4.0 (-11) 

1.0 (-11) exp 

1.0 (-11) exp 

2 . 5  ( -12)  

1.0 (-31) 

1.0 (-11) 

1.2 (-13) exp 

1.9 (-11) 

H 0 2  + CH 0 -+ O2 + CH402 3 2  
CH 0 + O2 -+ HO + C H 2 0  3 2 
OH + C H 4 0 2  -+ H 2 0  + CH 0 

O + N O + M + N 0 2  + M  

N O 2  + 0 + NO + O2 

NO + O3 -+ N O  

CH 0 

0 + O2 + M -+ O3 + M 

0 + 0 + M -+ O2 + M 

O2 + hv -+ 0 + O ( 1 D )  

0 + h v - + o + O  

O 3  + hv -+ O ( 1 D )  + O2 

3 2  

+ O2 2 
+ NO + NO2 + C H 3 0  

3 2  

0 + o3 -+ 202  

2 

0 3 + h v + o + 0 2  

H 0 + hv -+ H + OH 

H 2 0 2  + hv + OH + OH 

H 0 2  + hv -+ 0 + OH 

C H 2 0  + hu + H + CHO 

2 

CH 0 + hw + H2 + CO 2 

-SOO/T) 

-750/T) 

-24 50/T) 

NBS 513 

NBS 513 

NBS 513 

4.3 (-12) exp(-200/T) 

C =2.5 (-311, EX1=0.8 

C2=3. 0 (-11) , EX2=1.0 

6.0 (-12) 

1 

5.0 (-13) e x p ( - 2 0 0 0 / T )  

1.0 ( -10) exp (-750/T) 

1 .55  ( - 3 2 )  exp ( 5 8 4 / T )  

9 .3  ( -12)  

2.3 (-12) exp (-1450/T) 

7 .0 ( -12)  

6 . 2  (-34) (T/300)-* 

4.8 (-33) NBS 513 

1 . 5  (-11) exp (-2218/T) 

A < 1750 R e f .  96 

A < 2423 R e f .  97 

A < 3125 8 
< 11800 A Ref. 96 

x < 2100 R R e f .  98 

< 3500 fl  R e f .  99 

A < 4560 f l  
A < 3600 8 R e f .  98 

A < 3600 13 
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TABLE 8 -1. ( C o n t i n u e d )  

Major Species 

Reaction Rate Reference 

09, N9 

63. CH402  + hv + CH30  + OH 

64. CH4 + hv + CH3 + H 

65. NO2 + hv + 0 + NO 

66. NO3 + hv + 0 + NO2 

< 3500 A 

< 2800 A 

h < 3980 X 

< 6980 A 

Minor Species 
Short Relaxation 

T i m e  Scale Species 

67. NO3 + hV + O2 + NO 

68. C02 + hv + O(1D) 

69. CO + hv + 0 + CO 

+ CO 

2 

0(1D), 0 ,  03, H,  H 2 t  H 2 0 ,  O H ,  

H 0 2 ,  H 2 0 2 ,  N 2 0 ,  NO, NO2, NO3, 

3 CH3, C H 3 0 2 ,  CH 0,  C H 2 0 ,  CHO. 

< 6980 A 

< 1660 A 

< 2 2 6 0  A 

Ref. 99 

Ref. 98 

Ref. 98 

Ref. 98 

-11 * The r a t e  constant  1 .2( -10)  = 1.2 x 10 . 
? The reference indicated by NASA RP 1049 and NBS 513 r e f e r  toRefs .  100 and 

101, respect ively.  

Long Relaxation 
Time Scale Species 

I I 

8-5 



i n  t he  region of  i n t e r e s t ,  t he  atmospheric dynamic processes a r e  of secondary 

importance, w e  may r ep lace  the  t o t a l  d e r i v a t i v e  by the  l o c a l  t i m e  d e r i v a t i v e .  

Because of the  l a r g e  v a r i a t i o n  of r e l axa t ion  t i m e  s c a l e s  i m p l i c i t  i n  t h e  

chemical r e a c t i o n  set ,  i t  i s  convenient t o  group t h e  minor spec ies  i n t o  3 

ca tegor i e s  : 

1 (i) The r e l axa t ion  time s c a l e  i s  always smaller than the  order  of 10 

sec through t h e  whole day: 

(ii) The r e l a x a t i o n  t h e  scale can be  e i t h e r  smaller than or  greater 

1 than the  o rde r  of 10 sec depending on t h e  l o c a l  time and a l t i t u d e ;  

1 (iii) The r e l a x a t i o n  time scale i s  always g r e a t e r  than t h e  o rde r  of 10 

sec through the  whole day. 

It  should be mentioned he re ,  t h a t  t h i s  d i s t i n c t i o n  i s  made j u s t  f o r  t h e  

convenience of  performing the  numerical i n t e g r a t i o n .  I t  w a s  found t h a t  0 ( 1 D ) ,  

H ,  CH3, and CHO belong t o  the  f i r s t  category: OH,  H02, NO2, NO3, and CH30 

belong t o  t h e  second category,  w h i l e  the  t h i r d  category includes 0 ,  0 3 ,  H 2 ,  

H 2 0,  H202, NO, N20, CH3O2,  and C H 2 0 .  

A s  a r e s u l t ,  t h e  governing equation of spec ies  under photochemical e q u i l i -  

br ium,  i . e . ,  r e l axa t ion  time s c a l e  of less than 10 s e c ,  can be w r i t t e n  1 

O = P  - L  r j = 1 ,  2 , .  . . , N .  ( 2 )  
j j 

8 . 2 .  PHOTODISSOCIATION RATES 

The photodissoc ia t ion  r a t e s  (J.) f o r  t h e  j t h  spec ies  can be w r i t t e n  as 
3 

00 
where I is  t h e  photon f l u x  i n t e n s i t y  a t  the  top of the  atmosphere: 

0 i s  the  absorpt ion c ros s  sec t ion  of the j t h  gases  spec ie s ;  

T ( X ' , h , t )  is  the  atmospheric t ransmi t tance  o f  wavelength A '  a t  

j 

a l t i t u d e  h a t  l oca l  t i m e  t. 
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The f i n i t e  r e s o l u t i o n  ana log  of Eq. 3 is:  

m 
J . ( h , t )  = 1 oji Ii Ti ( h , t )  A A i l  (4 )  

i= 1 3 

where the  s u b s c r i p t  i i n d i c a t e s  t h e  i t h  s p e c t r a l  i n t e r v a l .  I f  w e  cons ider  

the  atmospheric  a t t e n u a t i o n  of t h e  s o l a r  r a d i a t i o n  due t o  t h e  absorp t ion  of 

atmospheric molecular  oxygen and ozone on ly ,  w e  have 

T i ( h , t )  = exp -{[oi(02) N ( 0 2 )  + ai (03) N ( O 3 , t ) 1 )  , 

where 

(h)  ds  ; molecular  oxygen column d e n s i t y ,  

S 

N ( O  ,t) = n ( h , t )  d s  ; ozone column d e n s i t y .  
3 S J O3 

It should be  emphasized he re  t h a t  the  dependence of photo1 

(5 )  

i s s o c i a t i o n  r a t - s  

J .  on t h e  t i m e  v a r i a t i o n s  of ozone concen t r a t ions  has been ind ica t ed  

e x p l i c i t l y  i n  Eqs. ( 3 )  , (4 )  , and ( 5 ) .  

3 

Pho tod i s soc ia t ion  ra tes  of t h e  i n t e r e s t e d  s p e c i e s  i n  the  mesosphere have 

been d i scussed  i n  d e t a i l  by Turco ( R e f .  9 8 ) .  W e  have adopted h i s  r e s u l t s  w i t h  

some mod i f i ca t ion .  T a b l e  8 .3  i n d i c a t e s  t he  wavelength i n t e r v a l  used f o r  

pho tod i s soc ia t ion  rate c a l c u l a t i o n s .  Simon ( R e f .  1 0 2 )  has reviewed and d i scussed  

the  c u r r e n t  knowledge of s o l a r  i r r a d i a t i o n  between 1200 A and 4000 A.  The 

sources  of  t h e  solar  i r r a d i a n c e  i n  t h i s  s tudy are given i n  Table 8 . 4 .  AS 

regards  t h e  impor tan t  a tmospheric  abso rp t ion  of Schumann-Runge bands of 

molecular oxygen, w e  have used B l a k e ' s  ( R e f .  97)  model for t h e  pho tod i s soc ia t ion  

ra te  c a l c u l a t i o n s .  The d e s c r i p t i o n  of t h e  ozone column d e n s i t y  N(O 1 by 

using Eq. (5)  w i l l  be  d i scussed  i n  d e t a i l  i n  t h e  nex t  s e c t i o n .  

3 
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TABLE 8 . 3  Wave leng th  I n t e r v a l s  Used f o r  C a l c u l a t i o n  
_-- 

;ravelength Ranae (nm) t!avelenoth i n t e r v a l  /(run) 

121.6 
125.0 - 175.0 
275.0 - 205.0 
205.0 - 400.0 
400.0 - 740.0 

0. I 
5.0 
1 .o 
5 .0  

20.0 

TABLE 8.4 Source  of S o l a r  I r r a d i a n c e  

Wavelenath i n t e r v a l s  (nm) 

121.6 (Lyman - I ) 

125.0 - 175.0 

375.0 - 205.0 

205.0 - 230.0 
230.0 - 320.0 
320,O - 740.0 

R e f .  100 

R e f .  104  

R e f .  105 

R e f .  103 

R e f .  106 

R e f .  96 
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8 - 3 - DIURNAL INTEGRATION 
A. Numerical Scheme 

As implied in Section 8.1, we have to solve a set of time dependent 

simultaneous equations for non-equilibrium species and a set of quasi-steady 

state equations for the equilibrium species. To solve the system of time 

dependent equations, it was assumed that the densities of equilibrium species 

were known and an implicitly numerical scheme was used, i.e., 

Furthermore, the system was linearized by introducing the following approxi- 

mations : 

f i  i i i  n.n = 1/4 (1.5 n. nk + 1.5 n. nf + n n ) 
3 k  3 i k  j k  

(7 )  

where j/k = 1,2, . . . , N, and f and i indicate the final and the initial 
values of gas j/k, respectively. Using the approach just described, the 

system of time dependent equations (1) can be transferred to a set of non- 

homogeneous simultaneous algebraic equations for solution. In order to 

avoid any human error, an automated system was developed to carry out the 

transformation according to the above description. To obtain the solution 

for species under equilibrium, it was assumed that the densities of all other 

were known and the equations were linearized. 

B. Grid and Time Stop 

In order to take the change of solar local time along the ray path into 

account in the determination of the photodissociation rates, a special grid 

is designed and is presented schematically in Figure 8.1. It corresponds to 
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I 
equinox cond i t ion  a t  t h e  equator .  I n  the reg ion  from 50 t o  80 km, t h e  I 

atmosphere is d iv ided  i n t o  30 l a y e r s  w i t h  1 km of th i ckness .  T h i s  also 

de termines  the p a t h  of s o l a r  r a d i a t i o n  i n  t h e  atmosphere along which t h e  

computation w i l l  be made (Fig.  8.1. Above 80 km, a model atmosphere is 

in t roduced  i n  which a s t eady  d i s t r i b u t i o n  of ozone as func t ion  of a l t i t u d e  

I 

i 
I 
~ 

only  i s  assumed. Thus, ozone d i u r n a l  v a r i a t i o n  is n o t  considered i n  t h e  

reg ion  above 80 km and only  t h e  v a r i a t i o n  o f  t h e  local z e n i t h  a n g l e  i n  a 

s p h e r i c a l  atmosphere i s  included.  Th i s  a d d i t i o n a l  l a y e r  of atmosphere 

p rov ides  u s  wi th  t h e  0 and 0 column number d e n s i t i e s  which are requ i r ed  

f o r  t h e  c a l c u l a t i o n  of t h e  pho tod i s soc ia t ion  rates a t  80 lan. This  may n o t  I 2 3 

be a good assumption. H o w e v e r ,  t h e  e r r o r  in t roduced  as a r e s u l t  o f  t h e  

assumption w i l l  dec rease  as t h e  a l t i t u d e  decreases and w i l l  exis t  only  i n  

t h e  uppermost p a r t  of t h e  reg ion  of i n t e r e s t .  Note t h a t  t he  local t i m e  o f  

s u n r i s e  ( s u n s e t )  i s  allowed t o  begin (end) ea r l i e r  ( l a t e r )  than  6:OO ( 1 8 : O O )  . 
The e x a c t  t i m e  o f  s u n r i s e  and s u n s e t  depends on t h e  a l t i t u d e  of  t h e  a i r  m a s s .  

I n  t h i s  s tudy ,  s o l a r  r a d i a t i o n  w i t h  a p a t h  tangent  h e i g h t  above 25 km is  

included ( F i g . 8 . 1 ) .  The e x a c t  d i s t a n c e  a t  t h e  tangent  p o i n t s  o f  two c l o s e s t  

ray  p a t h s  is se t  t o  be 1 km ( F i g . 8 . 1 ) i n  t h e  reg ion  from 2 5  t o  50 km. In 

t h e  res t  of s u n l i t  r eg ion ,  t h e  p o s i t i o n s  of ray  pa th  a r e  determined accord- 

ing  t o  t h e  express ion  

= ( R  + 25)  cos  ( e i )  , 
'i 

0 where 8 = I, and I = 1 , 2O, . . . , 180°, and R = 6372 km. A s i m i l a r  
i 

approach i s  app l i ed  t o  t h e  night- t ime r eg ion .  I t  i s  obvious t h a t  t h e  

time s t e p  a s s o c i a t e d  wi th  t h e  g r i d  j u s t  desc r ibed  i s  n o t  cons t an t .  In  

g e n e r a l ,  s m a l l  s t e p s  appear  i n  t h e  s u n r i s e  and sunse t  from about  20 seconds 
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F i g u r e  8.1.  A s c h e m a t i c  d i a g r a m  shows the g r i d  u s e d  i n  the m o d e l  s t u d y .  

ORIGINAL PAGE IS 
OF POOR QUALtW 

8-11 



t o  1 minute. The l o n g e s t  step,  which occur s  a t  noon, i s  about  4 minutes.  

It should be emphasized h e r e  t h a t  t h e  method of  computation used i n  

t h i s  s tudy  enables  u s  t o  c a r r y  o u t  t h e  t i m e  i n t e g r a t i o n  and to  update  t h e  

ozone concen t r a t ion  f o r  t h e  c a l c u l a t i o n  of the  l o c a l  pho tod i s soc ia t ion  

rates a t  each t i m e  s t e p .  

8 . 4  RESULTS 

The d i u r n a l  v a r i a t i o n s  of ozone and atomic oxygen i n  t h e  oxygen-only 

atmosphere are shown i n  F igs .  8 . 2  and 8.3,  r e s p e c t i v e l y .  The s o l i d  l i n e s  

denote  r e s u l t s  ob ta ined  w i t h  t h e  c o n s i d e r a t i o n  of  t h e  change i n  l o c a l  

s o l a r  t i m e  a long  t h e  r ay  p a t h  and t h e  dashed l i n e s ,  wi thout  t h e i r  i nc lus ion .  

Both f i g u r e s  i n d i c a t e  r a p i d  changes of ozone and atomic oxygen d e n s i t i e s  

above 55 km dur ing  s u n r i s e  and sunse t .  The  changes are more r ap id  when 

the  change i n  local solar  t i m e  a long  t h e  r a y  p a t h  i s  considered i n  t h e  

c a l c u l a t i o n  than  when it i s  n o t .  The r e s u l t s  also i n d i c a t e  greater ozone 

concen t r a t ions  and lower atomic oxygen concen t r a t ions  i n  t h e  l a t t e r  case. 

In  g e n e r a l ,  t h i s  d i f f e r e n c e  i n  the  concen t r a t ion  of atomic oxygen and ozone 

appears  t o  be t h e  maximum dur ing  s u n r i s e  and sunse t .  

The c a l c u l a t e d  d i u r n a l  v a r i a t i o n s  of ozone for t h e  0-H-N-C atmosphere 

a r e  p re sen ted  i n  F ig .  8 . 4 .  Again, t h e  s o l i d  l i n e s  are t h e  r e s u l t s  wi th  t h e  

cons ide ra t ion  of t h e  change of l o c a l  s o l a r  t i m e  a long  the  r a y  pa th  and t h e  

dashed l i n e s  are those  wi thout .  In  g e n e r a l ,  it i n d i c a t e s  t h e  same charac- 

t e r i s t i c s  as i n  Fig.  8 . 2 .  Again, d i f f e r e n c e s  a r e  found i n  t h e  ozone 

concen t r a t ion  between t h e  two cases, e s p e c i a l l y  dur ing  s u n r i s e  and sunse t .  

I n  t h e s e  cases, t h e  n e g l e c t  of temporal v a r i a t i o n  i n  t h e  overhead column 
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amount of  ozone l e a d s  t o  ozone concen t r a t ions  which are too  l a r g e .  This  

e r r o r  can be as l a r g e  as a f a c t o r  of 3 a t  70 km. The d i f f e r e n c e  i n  t h e  

d i u r n a l l y  averaged ozone concen t r a t ion  is found to  be 15  p e r c e n t  a t  50 Ian. 

A comparison of  t h e  ozone d i s t r i b u t i o n  a t  noon of t h i s  model s tudy  wi th  

r e s u l t s  of o t h e r  t h e o r e t i c a l  c a l c u l a t i o n s  as  w e l l  as t h e  d i s t r i b u t i o n  of U.S. 

Standard Atmosphere (1976) ( R e f .  107) are given in Fig. 7 . 5 .  The r e s u l t s  of this 

agree  very w e l l  wi th  U.S. Standard Atmosphere (1976) and a l s o  w i t h  Logan, e t  a l .  

(Ref. 92) and P r a t h e r  (Ref. 94) except  between 50 and 55 km, where t h e  p r e s e n t  rz 

are 35-50 p e r c e n t  l a r g e r .  Fig.  7.5 also i n d i c a t e s  s i g n i f i c a n t  d i f f e r e n c e s  i n  

t h e  ozone p r o f i l e  between t h i s  model and ear l ier  s t u d i e s  of  Hesstvedt  (Ref .  881, 

Shimazaki and Lai rd  ( R e f .  891, and Park and London (Ref. 91). These d i f f e r e n c e s  

could be due t o  t h e  f a c t  t h a t  t h e i r  s t u d i e s  were conducted a t  d i f f e r e n t  

l a t i t u d e s ,  d i f f e r e n t  seasons ,  and with d i f f e r e n t  r e a c t i o n  ra tes .  

S ince  t h e  information of ozone na tu re  d i u r n a l  behavior  i s  very  u s e f u l  

f o r  i n t e r p r e t a t i o n  of ozone s o l a r  o c c u l t a t i o n  measurements and f o r  t e s t i n g  

t h e  c u r r e n t  knowledge of atmospheric photochemistry,  e f f o r t  has  been i n c r e a s -  

i ng ly  toward t h e  d i r e c t  de te rmina t ion  on t h e  d i u r n a l  v a r i a t i o n  of mesospheric 

ozone (Refs.  108-112) .  The ozone I R  s a t e l l i t e  data  a l so  have been used t o  

deduce t h e  ozone d i u r n a l  v a r i a t i o n  (Anderson e t  a l . ,  Ref. 113). Although t h e  

d i f f e r e n c e  i n  t h e  d e t a i l e d  ozone d i u r n a l  behavior  observed from d i f f e r e n t  

methods s t i l l  e x i s t s ,  t h e  measured r e s u l t s  t end  t o  agree g e n e r a l l y  w i t h  t h e  

n i g h t t i m e  enhancement of t h e  ozone c o n c e n t r a t i o n  i n  t he  mesosphere ( R e f .  1 1 2 ) .  

A comparison of t h e  change i n  t h e  dayt ime ozone c o n c e n t r a t i o n  with r e s p e c t  t o  

t h e  n i g h t t i m e  c o n c e n t r a t i o n  p r e d i c t e d  by t h e  p r e s e n t  model and t h a t  from v a r i o t  
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OF POOR QUALmY 

8- 14 



03, NOON 

A HESSIWDT (I970 45” LA. SUMEi 

’ -- F#RK 6 LONDON (1974) XWJ JULY 

+silMaw<l&wmo972)6cp~ 
SUMMER 

X LOGAN et al (1978) 30’”. 
EQUINOX 

I- - - - 

a - - 

CONCENTRATION, C M - 3  
F i g u r e  8 .5 .  
w i t h  the U . S .  S t a n d a r d  A tmosphere  (1976), and a l s o  w i t h  e a r l i e r  t h e o r e t i c a l  
c a l c u l a t i o n s .  
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measurements i s  given i n  T a b l e  8 . 5 .  This t a b l e  provides t h e  genera l  

t r ends  of t h e  d iu rna l  changes i n  t h e  mesospheric ozone r a t h e r  than a 

d e t a i l e d  comparison of t h e  measured r e s u l t s  from d i f f e r e n t  sources .  

I n  conclusion,  t h i s  s e c t i o n  has shown t h a t  t he  e f f e c t  of change i n  t h e  

local solar time along t h e  ray  pa th  i s  t o  increase  the  l o c a l  photodissocia-  

t i o n  rates. As a r e s u l t  of this effect, t h e r e  is an enhancement of ozone 

d i u r n a l  v a r i a t i o n ,  p a r t i c u l a r l y  dur ing  s u n r i s e  and sunse t .  Since t h e  s o l a r  

o c c u l t a t i o n  technique measures the  ozone a t  the  l o c a l  t i m e  6:00/18:00, t h e  

r e s u l t s  given i n  Fig.  8.4 suggest  t h a t ,  i n  m o s t  a l t i t u d e  ranges i n  the  m e s o -  

sphere ,  t h e  ozone s o l a r  occu l t a t ion  measurements can provide good r ep resen ta t ion  

of day-time ozone concent ra t ion  p r o f i l e .  

TABLE 8.5 
w i t h  the  N i g h t - T i m e  Concentration of T h i s  Model Predication w i t h  T h a t  of Direct 

A Comparison of the  Percentage Change i n  Day-Time Ozone Concentration 

Measurements 

__ - -. - - 
____ DIRECT KEASUREMENTS 

(1976) (1951) (1982) (1982) 

Altttude, Thls  Model - -- 
predication H I  lsenrath' Penf leld' V I  l son Vauahan Leon' km 

(1971 ) 
( R e f .  1131 ( r e f .  108) ( R e f .  110) ( R e f .  111) (Ref. 112) 

-. _ -  

-21% -19% -8Z -12X 50 
55 - 3 3 1  -22% -152 

60 -5OI -23% - 38% -45% 

65 -71% -51% -4OX z -902 -55% -56: 

70 -90% -53% -34Z 
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APPENDIX 1 

DENSITOMETRY OF SOLAR AUREOLE PHOTOGRAPHS 

BY SPOT AND SCANNING DENSITOMETERS: 

AN INTERCOMPARISON OF RESULTS 

This paper desc r ibes  methods of  making o p t i c a l  dens i ty  measurements 

along t h e  f i l m  p r o j e c t i o n  of  t h e  almucantar,  which i s  a conic ,  by means 

1 of scanning and spo t  densi tometers  and intercompares t h e i r  r e s u l t s .  

INTRODUCTION 

The photographic measurements of  t he  solar  aureole almucantar 

radiance r equ i r e  t h a t  densitometry be performed on t h e  photograph t o  

determine the  o p t i c a l  dens i ty  along t h e  f i l m  p r o j e c t i o n  of  t he  almucantar,  

which i s  a conic  i n  the  f i l m  plane (Ref. 1). The equat ions f o r  t he  almucan- 

tar  conic  are given i n  Refs. 1 and 2 ,  deal ing  with photogrammetry of  the  

s o l a r  aureole .  A s  explained i n  Refs. 3 - 6 ,  t hese  almucantar radiance 

measurements a r e  used f o r  t he  r e t r i e v a l  of aerosol  s i z e  d i s t r i b u t i o n .  

There a r e  seve ra l  types of densi tometers  i n  ex i s t ence ,  and i n  o rde r  t o  

explore  ways i n  which the  da t a  reduct ion of aureole  photographs could be 

reduced i n  the  cos t  of the  equipment, we decided t o  perform densitometry 

with a r e l a t i v e l y  inexpensive model of a t y p i c a l  transmissometer-type of 

spo t  densitometer ( i n  which measurements along the  conic  must  be per- 

formed by a manual pos i t i on ing  of the  photograph--a task  somewhat cumber- 

some and prone t o  error--and compare these  r e s u l t s  aga ins t  those obtained 

' A s s i s t a n c e  of R .  R .  Adams of NASA-Lang ley  R e s e a r c h  C e n t e r  iS 
g r a t e f u l l y  a c k n o w l e d g e d .  
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f o r  t h e  same photograph by an automatic  scanning microdensitometer (Joyce- 

Loebl). The l a t t e r  can measure and d i g i t i z e  on an ou tpu t  t ape  the  

o p t i c a l  d e n s i t y  of t h e  photographic  frame a t  a p re sc r ibed  number o f  

p i c t u r e  e lements  c a l l e d  p i x e l s .  I n  the l a t t e r  case, one can simply read 

o f f  t h e  t ape  t h e  d e n s i t i e s  f o r  on ly  those  p i x e l s  whose x- and y-coord ina tes  

are p r e s c r i b e d  by t h e  conic  equat ion ,  a procedure which seems less  prone 

t o  error. This  paper  desc r ibes  s imple techniques f o r  making a c c u r a t e  

, 

o p t i c a l  d e n s i t y  measurements a long  such conics  wi th  

dens i tometer .  

Op t i ca l  Densi ty  

I n  t h e  f i e l d  of photographic  densi tometry,  t h e  

d e n s i t y ,  as a measure o f  t h e  a t t e n u a t i o n  of  r a d i a n t  

mental  importance. When t h e  a t t e n u a t i o n  re la tes  t o  

t h e  h e l p  of a spot 

concept  of o p t i c a l  

f l u x ,  is  of  funda- 

t h e  f l u x  t r a n s m i t t e d  

( r e f l e c t e d )  by t h e  developed image, t h e  term t r ansmiss ion  ( r e f l e c t i o n )  

d e n s i t y  i s  used. For an e x c e l l e n t  d i scuss ion  of what fo l lows  i n  t h i s  

s e c t i o n ,  see Ref. 7 .  Only t h e  t ransmiss ion  d e n s i t y  w i l l  be d e a l t  w i th  i n  

t h i s  paper .  

The t ransmiss ion  dens i ty '  is de f ined ,  i n  g e n e r a l ,  as  t h e  logar i thm 

of t h e  o p a c i t y  (Q) or  r e c i p r o c a l  t ransmi t tance  ( T )  o f  t h e  developed 

image, which i s  j u s t  t h e  r a t i o  o f  t h e  r a d i a n t  f l u x  P 

developed image t o  t h e  r a d i a n t  f l u x  P t r ansmi t t ed  by t h e  image. 

i n c i d e n t  on t h e  
0 

t 

The des ign  of  t h e  photometer used i n  t h e  measurement of dens i ty  

A l l  a t t e n u a t o r s  s t r o n g l y  in f luences  t h e  values  of d e n s i t y  obta ined .  
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scatter some energy and thereby  degrade t h e  image q u a l i t y .  Whenever 

o p t i c a l  energy measurements r e l a t i n g  t o  T are made by c o l l e c t i n g  l i g h t  

ove r  a l a r g e  s o l i d  angle  (normally 180 1 ,  t h e  measurements are termed 

d i f f u s e .  Conversely,  s p e c u l a r  measurements are those  taken  on axis o r  

ove r  a s m a l l  cone angle  only .  Values f o r  d i f f u s e  measurements are 

normally t h e  sum of t h e  s p e c u l a r  va lue  p l u s  t h e  amount of s c a t t e r e d  

energy. The cond i t ions  of i l l u m i n a t i o n  and l i g h t  c o l l e c t i o n  used i n  

measurement of specu la r  and t o t a l l y  d i f f u s e  d e n s i t y  are shown i n  F i g s . l ( a )  

and l ( b )  which are adapted from R e f .  7 .  The r a t i o  of specu la r  t o  d i f f u s e  

d e n s i t y ,  known as t h e  Cal l ier  c o e f f i c i e n t  o r  Cal l ier  Q f a c t o r ,  i nc reases  wi th  

emulsion g r a i n  s i z e .  I n  both cases  i l l u m i n a t i o n  angle  a i s  s m a l l ,  but  t h e  

view cone angle  8 v a r i e s  from 0 t o  90'. 

va lues  o f  d e n s i t y  b u t  i n c r e a s e s  r a p i d l y  a t  t h e  lower va lues  of d e n s i t y ,  

reaches  a maximum and then g radua l ly  decreases .  A l s o ,  t h e  development 

o f  f i l m  t o  d i f f e r e n t  va lues  o f  gamma, t h e  H-D c o e f f i c i e n t ,  have profound 

e f f e c t  on t h e  Q f a c t o r ,  Q i nc reases  f o r  h ighe r  y. P h o t o e l e c t r i c  t r ans -  

mission dens i tometers  are c l a s s i f i e d  i n t o  two types :  d e f l e c t i o n  and n u l l  

dens i tometers .  I n  the former type of dens i tometer ,  t h e  sample is placed 

i n  t h e  pa th  o f  a narrow co l l ima ted  beam t r a v e r s i n g  t o  the  p h o t o e l e c t r i c  

c e l l ,  and d e n s i t y  i s  read from t h e  r e l a t i v e  meter readings ;  i n  t h e  l a t t e r  

t ype ,  t h e  c e l l  c u r r e n t  produced by l i g h t  from t h e  tes t -sample beam is  

balanced by an equ iva len t  c u r r e n t  which may be de r ived  from another  c e l l  

and l i g h t  beam through a c o n t r o l l e d  c a l i b r a t e d  stepwedge. The Joyce-Loebl 

microdensi tometer  i s  a nul l - type  of  ins t rument  which measures specu la r  

dens i t y . 

0 

0 The Q f a c t o r  i s  not  cons tan t  f o r  a l l  
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Measurement of Density wi th  
a S p o t  Densitometer 

A n  a v a i l a b l e  t ransmission-type spot dens i tometer  (McBeth TD-102) 

w a s  used t o  make t h e  d e n s i t y  measurements a long  t h e  con ic  p r o j e c t i o n  of 

the  almucantar .  The coord ina te s  (X , Y 1 o f  t h e  p o i n t s  t h a t  l i e  on t h e  
P P  

c o n i c  can  be ob ta ined  by either s u b s t i t u t i o n  i n  Eq. (10 )  R e f .  2 ,  o r  by 

m u l t i p l y i n g  the x-y v a l u e s  from Table  1 i n  R e f .  2 f o r  t h e  approximate 

a lmucantar  c o n i c  by t h e  l e n s  focal l e n g t h  f ,  namely, 55 mm. Another way of 

p o s i t i o n i n g  t h e  photograph t o  read t h e  d e n s i t i e s  are  a t  v a r i o u s  x-y p o s i t i o n s  

a long  the  c o n i c  is by us ing  t h e  graphs  of c o n i c s ,  such  as shown i n  F ig .  2 .  

, Y ) values  f o r  f = 1 mm are g iven  i n  T a b l e  1, i n  
(xP P 

i n  R e f .  2 .  

Ref. 2 ,  so t h a t  ( X  Y 1 values  f o r  another  l e n s  f o c a l  l eng th  f can be 

ob ta ined  by m u l t i p l i c a t i o n  by f. 
P' P 

Procedures  f o r  making t h e  o p t i c a l  d e n s i t y  measurements wi th  t h e  s p o t  

dens i tometer  are descr ibed  as fol lows.  

The u s e  of t h i s  method assumes t h a t  t he  au reo le  photograph was taken 

wi th  t h e  l e n s  a x i s  co inc iden t  wi th  t h e  sun l i n e  (sun cen te red  i n  frame) 

wi th  one edge o f  t h e  frame h o r i z o n t a l  and t h a t  t h e  l e n s  f o c a l  l eng th  (f) 

and t h e  solar  e l e v a t i o n  angle  (QS) a t  the  t i m e  o f  photography a r e  known. 

The example presented  i n  t h i s  paper  s e r v e s  t o  demonstrate  the tech-  

nique f o r  t h e  case of an 80 mm f o c a l  l eng th  l e n s  on a 70 mm Hasselblad 

camera. An a v a i l a b l e  McBeth TD-102 s p o t  dens i tometer  w a s  used f o r  den- 

s i t y  readings .  

F igu re  2 'is a f u l l - s i z e  reproduct ion  of t h e  s p o t  densi tometer  a l i g n -  

ment guide.  The d i s t a n c e  between c i r c l e s  marked (a )  and (b )  was chosen 
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such t h a t  (a) w a s  c l e a r l y  v i s i b l e  and on the  Densitometer table when (b)  

w a s  cen tered  i n  the l i g h t  beam. 

Figure 3 is  a 1:l reproduction of  t he  t ransparency upon which the  

The curves negat ive t o  be analyzed is p r e c i s e l y  pos i t ioned  and taped. 

shown wi th in  t h e  x-y mm g r i d  were computed from Eq.(lO) i n  R e f . 2  f o r  an 80 mm 

foca l  l eng th  l e n s  f o r  values  of from 10 t o  70 . The sun l i n e  (x = 

0 mm) is  extended o u t s i d e  t h e  g r i d  area f o r  proper  negat ive alignment. The 

0 0 

S 

do t t ed  o r  dashed r ec t ang le s  are c u t  from the  t ransparency f o r  35 mm or  

70 mm nega t ives ,  r e spec t ive ly .  The area o u t s i d e  t h e  dot-dash l i n e  i s  

removed from t h e  transparency. 

Following is  a step-by-step procedure f o r  t ak ing  dens i ty  readings:  

(1) Remove Figures 2 and 3 from body of  paper.  

( 2 )  Make a 1:l t ransparency of  Figure 3 .  A contact-type view- 

graph may be used. 

( 3 )  Remove the  dashed rec tangle  from the  t ransparency,  using 

a s t r a i g h t  edge and sharp blade.  C u t  a l s o  along dot-dash l i n e .  

(4) Place Figure 2 f ace  up on a f l a t  su r f ace  with c i r c l e  ( a )  

t o  the  l e f t .  

(5) Align Figure 3 transparency over Figure 2 such t h a t  t he  

x-y g r i d  i s  t o  t h e  l e f t  and t h e  sun l i n e  (x = 0 mm) is  co inc ident  w i t h  

the  l i n e  connecting c i r c l e s  (a )  and (b). Then, s l i d e  the  sun l i n e  of 

Figure 3 a l o n j  t he  l i n e  (a) (b)  o f  Figure 2 u n t i l  the  proper @s curve 

of t h e  negat ive t o  be read is  exac t ly  centered  above c i r c l e  ( a )  and 

temporar i ly  tape  Figure 3 t o  Figure 2 .  
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(6) Place the  photograph negat ive ,  emulsion s i d e  down, wi th in  the  

c u t  po r t ion  of Figure 3 such t h a t  the  c e n t r a l  sun image i s  exac t ly  centered  

above c i r c l e  (b)  and r o t a t e  i t  u n t i l  t he  bottom exposed po r t ion  of t h e  

negat ive (nea res t  horizon i n  scene) i s  p a r a l l e l  t o  y ,  mm = 0 ,  using t h e  

g r i d  t o  the  r i g h t  of (b)  as a guide. Carefu l ly  tape  i n  p lace  on Figure 3 

o u t s i d e  of t h e  exposure a rea .  

(7 )  Remove Figure 3 from Figure 2 and p l ace  Figure 2 on 

Densitometer t a b l e  such t h a t  c i r c l e  (a) is  c l e a r l y  v i s i b l e  and on t h e  

table while c i r c l e  (b) is d i r e c t l y  centered  i n  t h e  measurement beam. Mark 

t h i s  l o c a t i o n  of Figure 2 on t h e  t a b l e  so t h a t  it can be replaced without  

r e f e r e n c e  t o  c i rc le  ( b ) ,  remove Figure 3 and c u t  ou t  dashed r e c t a n g l e  

enc los ing  c i r c l e  (b). Reposit ion on Densitometer t a b l e  and f a s t en  down 

secure ly  with tape.  

Readout technique. For pe r iod ic  values  o f  x ,  w e  proceed t o  c a r e f u l l y  

p o s i t i o n  Figure (and, thus ,  the  negat ive)  over the  alignment guide i n  

such a manner t h a t  the  des i red  0 curve remains centered over c i r c l e  ( a )  

and t h a t  l i n e  (a)  (b) and the  sun-line always remain p a r a l l e l  a s  evidenced 

by equal  values  of x a t  both ends of t h e  x-y g r i d  loca t ed  d i r e c t l y  over 

l i n e  (a )  (b) . Note t h a t  a s  t h i s  happens, t he  l i n e  perpendicular  t o  (a) (b) 

through c i r c l e  ( a )  reads corresponding values of  y ,  mm. Thus ,  t abu la r  

values  of y ,  mm vs.  x, mm a s  computed from Eq.(lO), i n  Ref. 2 ,  may be used t o  

proper ly  pos i t i on  the  negat ive in s t ead  of  the  curve drawn f o r  4 with in  

the  g r i d .  

S 

S 

A dens i ty  reading i s  recorded each t i m e  the  negat ive is properly 

pos i t ioned  within the  measurement beam a t  the  des i r ed  increments of x .  
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APPENDIX 2 

PHOTOGRAMMETRIC INTERPRETATION OF SOLAR ALMUCANTAR SCAN 

The almucantar,  which i s  a conica l  scan of s o l a r  zen i th  angle  with 

l o c a l  z e n i t h  a x i s  a s  t h e  a x i s  of r o t a t i o n ,  p r o j e c t s  on t h e  f i l m  p lane  as 

a conic.  

In  o rde r  t o  photographical ly  measure almucantar radiance,  o p t i c a l  

d e n s i t y  measurements must be made along t h e  conic.  I f  a spot densitometer is  

used f o r  t h i s  purpose,  t h e  problem of pos i t i on ing  t h e  densitometer s p o t  a t  

any p o i n t  along t h e  almucantar conic  r equ i r e s  t h e  knowledge of i t s  rec t angu la r  

coord ina tes  ( x , y ) .  A s tandard t a b l e  €or  computing t h e  x-y coord ina tes  for  

almucantar conics  corresponding t o  the  s o l a r  zen i th  angles  1Oo(2O) 44O, 45O, 

4 6 O ( 2 O )  700 and f o r  any l e n s  foca l  length is  given. 

formulae €or  t h e  almucantar conic which a r e  der ived i n  t h i s  s ec t ion .  

The t a b l e  i s  based on 

1 

INTRODUCTION 

An ear l ier  paper (Ref. 1) presented t h e  photogrammetry of t he  s o l a r  

au reo le ,  g iv ing  de r iva t ion  of t he  important r e l a t i o n s  involved. In  order  t o  

photographical ly  measure radiance along t h e  almucantar,  which p r o j e c t s  on 

the  f i l m  p l ane  a s  a conic ,  €or  any s o l a r  zen i th  angle ,  t h e  o p t i c a l  dens i ty  a t  

po in t s  a long t h e  conic needs to be measured. Almucantar i s  def ined a s  t h e  

~~ _ _ _ _ _ _ ~  

A s s i s t a n c e  of D r .  M .  A .  BOX, staff S c i e n t i s t ,  IFAORS (1977-1979)  and  
p r e s e n t l y  a t  the U n i v e r s i t y  o f  New S o u t h  W a l e s ,  is g r a t e f u l l y  acknowledged .  
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con ica l  scan of s o l a r  z e n i t h  angle ,  with t h e  l o c a l  zen i th  as the  axis of 

r o t a t i o n .  I f  a scanning microdensitometer, with a d i g i t a l  t ape  output  is  used, 

t h e  t a s k  of making t h e  o p t i c a l  dens i ty  measurements along t h e  conic is  simple, 

s i n c e  one can select t h e  da t a  f o r  t h e  po in t s  f a l l i n g  along the  conic  by t h e  

u s e  of  t h e  appropr ia te  equations.  However, i n  t h e  case  of a manual spo t  

densi tometer ,  t h e  problem of pos i t i on ing  t h e  spot  a t  pos i t i ons  (x ,y )  along 

t h e  conic  i s t e d i o u s ;  it requ i r e s  a se t  of (x,y) values  f o r  t h e  almucantar 

conic  corresponding t o  t h e  p a r t i c u l a r  s o l a r  zen i th  angle.  

t h e  t a s k  of  computing t h e  x-y values  along t h e  conic ,  w e  have cons t ruc ted  a 

s tandard  table of (x,y) values  f o r  s e v e r a l  s o l a r  zen i th  angles  (namely, 

1 O 0 ( 2 0 ) 4 4 O ,  450, 460(20)700) ,  and camera l e n s  foca l  length  f = 1 nun. 

I n  order  t o  s impl i fy  

I n  o rde r  t o  o b t a i n  t h e  ( x p r y  1 coordinates  of image p o i n t s  def ined by 
P 

l o c i i  of var ious  types of measurement scans made i n  the  s k y ,  a b r i e f  

dev ia t ion  of  t h e  equat ions which d i f f e r s  from t h a t  given i n  Ref. 1, i s  

presented a s  follows. 

PHOTOGRAMMETRIC RELATIONS FOR ALMUCANTAR SCAN 

L e t  (X,Y,Z) and ( x , y , z )  be the  coordinate  systems with t h e i r  r e spec t ive  

o r i g i n s  a t  t h e  o p t i c a l  cen te r  0 of  t he  camera l ens  and the  cen te r  C of 

t h e  f i l m  frame (Fig.  1) .  I n  addi t ion ,  Z and z represent  t he  l o c a l  

zen i th  and the  o p t i c a l  a x i s ,  r e spec t ive ly .  X i s  ho r i zon ta l  and perpendicular  

t o  t h e  page; f i s  t h e  l e n s  foca l  length.  These two coordinate  systems a r e  

r e l a t e d  by the  equat ions,  
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FIG. 1: S c h e m a t i c  i l l u s t r a t i o n s  of the f i l m  projection of the s c a n s  of 

PS ' constant zeni t h  a n  ql e $,, the  a l m u c a n t a r ,  c o n s t a n t  a z i m u t h  a n g l e  w 
and the s u n - v e r t i c a l .  

x = x,  Y = y cos 

z = y sin $ + ( z  - f) cos $ 

- (z - f) sin $cl 
C 

C C 

The equation of the film plane is z = 0. 

The purpose of photogrammetry is to reconstruct the positions in 

the object space corresponding to the points in the image space. Let 

, w 1 be the angular coordinates of a point P in the (X, Y, Z)  
(@P P 
system. The zero azimuth position is defined by setting w , the 

optical axis azimuth, equal to zero. Then the equation of a ray of 
C 

light having angular coordinates ($ w ) and passing through the 

optical center 0, is given in terms of (XY) coordinates by 
PI P 

x = z tan 4 sin wp I 
Y = -"o tan $ cos w 

P P 

P P P 
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of, i n  terms of x,y coord ina te s  by 

x = t a n  @ s i n  w ( y  s i n  @c - f cos Q,c) 
P P P P  

ypcos $c + f s i n  $c = t a n  Q, cos w ( f  cos  $c - ypsin Q,c) 
P P 

i tan Q,p cos  w cos $c - s i n  Q,c 

tan Q, c o s  w s i n  Q, + cos  Q,c 
P 

P P C 

= f  
yP i .e.  , 

However, i n  photographic  i n t e r p r e t a t i o n  work, one u s u a l l y  needs 

t o  know t h e  angular  coord ina te s  (6 w ) of  t h e  l i ne -o f - s igh t  i n  t h e  

object space corresponding t o  a given l o c a t i o n  ( x  y ) i n  t h e  photo- 

g raph ic  frame. Then from Eq. ( 3 1 ,  one ob ta ins  

P ,  P 

P,  P 

t a n  Q, cos  w (f cos Q,c - y s i n  Q, ) = y cos  Q, P P P C P C 
+ f s i n  $c 

( 4 )  
t a n  4 s i n  w (f cos  aC - y s i n  Q, ) = - x 

P P P C P 

so t h a t ,  

t a n  w = - x / ( y  cos Qc + f s i n  ac) 
P P P  

Thus, u s ing  E q .  ( 3 ) ,  one can determine (0 from x and w . P P P 

The p r o j e c t i o n  of t h e  cons t an t  z e n i t h  angle  scan i n  (X,Y) and 

( x , y )  p l a n e s  i s  obta ined  by e l i m i n a t i n g  0 from Eqs. ( 2 )  and ( 3 )  , 

which y i e l d s  

P 

2 2 2 2 

P P  
X + Y  = Z  t a n  @ P 

o r  

2 
f s i n  2 Q C  sec  Q 2 2 2 

P P  C P + yP P 
x2 + y (1 - s i n  4 sec 0 

( 5 )  

(7 )  
2 2 2 + f (1 - cos  @c sec (P 1 = 0 

P 
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Then t h e  f i l m  p r o j e c t i o n  of t h e  a lmucantar  s c a n  is o S t a i n e d  from 

Eq. ( 7 )  by s e t t i n g  @ = @c, so t h a t  
P 

L L xp + Y; (1 - tan @c) + 2yp f t a n  $ = 0 
C 

I f  $c = 4S0, Eq .  (8) reduces t o  t h e  f o l l o w i n g  re la t ion  

x 2 + 2 f y  = o  
P P 

From Eq. (8) , one obtains  

D E S C R I P T I O N  AND U S E  OF STANDARD TA3LE 

One can o b t a i n  a s t a n d a r d  t a b u l a t i o n  (Table 1) o f  ( x  , y ) v a l u e s  o f  
P P  

t h e  a l m u c a n t a r  p r o j e c t i o n  for  any solar  z e n i t h  a n g l e  @ 

46°(20)700, and for  f = 1 mm. 

v a l u e s  of c o n i c  s e c t i o n s  can  be o b t a i n e d  for a l e n s  of any o t h e r  f o c a l  

l e n g t h  € (mm) by m u l t i p l y i n g  t h e  v a l u e s  o f  x , i n  T a b l e  1 by t h e  f a c t o r  

f .  F i g u r e  2 i l l u s t r a t e s  t h e  c o n i c  s e c t i o n s  f o r  f o u r  focal l e n g t h s ,  namely, 

35, 50,  55, and 80 nun f o r  a lmucantar  c o r r e s p o n d i n g  t o  a few s o l a r  z e n i t h  

a n g l e s  i n  t h e  range 10  

= 10°(20)440, 45O, 
S 

P' yP) 
I t  i s  assumed here t h a t  4 = 4,. The (x 

C 

P yP 

0 - 70'. 

I n  p a s s i n g ,  it may be mentioned t h a t  i n  case t h e  p r o j e c t i o n  o f  t h e  

sun  v e r t i c a l  s c a n  (4 = 0)  is r e q u i r e d ,  it can b e  o b t a i n e d  by e l i m i n a t i n g  

w from E q s .  ( 2 )  and ( 3 ) .  For f u r t h e r  de t a i l s ,  see R e f .  1. 

P 

P 
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ALMXANTAR PROJECTlON ON FLM 
. FOCOI Lmqth= 35mm 

E 
E O  
*- 

X. mm 

X.rnm- 

ALMUCANTAR PROJECTION ON FILM 

Focd Length' 50mm 

X.mm- 

X,mm - 

F I G .  2 :  Conic sections f o r  four focal lengths ,  namely, 
3 5 ,  5 0 ,  5 5 ,  and 80 mm f o r  almucantar corresponding t o  a few 

solar zenith angles i n  the  range loo  t o  70°. 
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